
Xerox Data Systems

XEROX Xerox Real-Time Batch Monitor (RBM)
Sigma 2/3 Computers

Real-Time and Batch Processing
Reference Manual

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Real-Time Batch Monitor (RBM)

© 1968,1969,1970,1971, Xerox Corporation

Sigma 2/3 Computers

Real-Time and Batch Processing

Reference Manual

90 10 37E

March 1971

Price: $6.50

XEROX

Printed in U.S.A.

REVISION

This publication is a major revision of the Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual for
Sigma 2/3 computers, Publication Number 90 10 37D (dated August 1970). Primary technical changes made to the
text are for the DOO version of RBM. Ot~er changes are a heavy reorganization of the text for improved reader
referencing. All technical changes from that of the previous manual are indicated by a vertical line in the margin
of the page. Organizational changes in the text are not so indicated.

RELATED PUBLICATIONS

Title

Xerox Sigma 2 Computer/Reference Manual

Xerox Sigma 3 Computer/Reference Manual

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual

Xerox Basic FORTRAN and Basic FORTRAN IV/LN, OPS Reference Manual

Xerox FORTRAN Library/System Technical Manual

Xerox Basic FORTRAN IV/OPS Reference Manual

Xerox Extended Symbol/LN OPS Reference Manual

Publication No.

900964

90 15 92

90 1555

900967

90 10 36

90 15 25

90 10 52

Iv\anual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

GLOSSARY viii PMD 14
PURGE 15
REL 15
REWIND 15

1. INTRODUCTION TEMP 15
UNLOAD 16

RBM Characteristics 1 WEOF 16
Resident Section 1 XEQ 16
Nonresident Section 1 XED 16
System Envi ronment 1 Processor Control Commands 16
Foreground (High-Level Priority Response) __ 2 Extended Symbol Control Command
Background (Low-Level, No Priority) 2 Format 17
Secondary Storage Management 3 Basic FORTRAN IV Control Command
Overlay Capabi I i ties 4 Format 18
Checkpoi nt/Restart 4 RBM/Processor Interface 18
Publ ic Library 4 GO and OV Fi les 18
Reentrant Routines 4
Accounting and Elapsed Time 4
System Initialization 5

Hardware Requirements 5
RBM Subsystems 6 3. OPERATOR COMMUNICATIONS 20

Language Translators 6
Service Programs 6 System Communication 20
Miscellaneous 6 I/O Recovery Procedure 20

RBM Terms and Processes 7 Monitor Message 20
Task 7 Operator Control 24
Program 7 Unsolicited Key-Ins 24
Foreground 7 BL oplb = DFNLpJ 24
Background 7 BL oplb = oplb[,P] 24
Job 7 BR[dtJnn 24
Job Step 8 BT dn,track 24
Background Task 8 C: TCBLcode] 24
Monitor Service Routines 8 CC 24
Floating Accumulator 8 CP 24
RBM Control Task 8 DB xxxx,yyyy 24
Nonresident Foreground 8 DE 24
Compressed RAD Fi les 8 DF xxxx, yyyy 24

DM xxxx,yyyy 24
D [T~MM/DD[/YY][,HRMN] 24
D [T MM,DD['YY1[,HR,MN] 25

2. CONTROL COMMANDS 9 DR dn xxxx,yyyy 25
F 25

Job Control Processor (JCP) 9 FG [,S1 25
Monitor Control Commands 9 FL oplb = DFN [,P] 25

ABS 9 FL oplb = oplb ['P] 25
ASSIGN 10 FR Edt] nn 25
ATTEND 12 H 25
C: 12 KP 25
CC 13 L ar,dn[,wp] 25
DEFINE 13 M ar,dn 25
EOD 13 Q name 25
FIN 13 S 25
FSKIP, FBACK, RSKIP, RBACK 13 SY [,S] 26
HEX 14 T HRMN 26
JOB 14 T HR,MN 26
JOBC 14 UL 26
LIMIT 14 W 26
MESSAGE 14 X 26
PAUSE 14 Z 26

iii

4. MONITOR SERVICE ROUTINES 27 Foreground Initialization 66
Task Control Block Functions 66

Branching to Service Routines 27 Foreground Priority Levels and I/O Priority __ 68
Service Routi nes 27 AIO Receivers 70

M:IOEX 27 Checkpointing the Background 70
M:READ 31 Foreground Codi ng Procedures 71
M:WRITE 36
M:CTRL 39
M:DATIME 40
M:TERM 41
M:ABORT 41 7. OVERLAY LOADER 72
M:SAVE 42
M:EXIT 42 Overlay Cluster Organization 72
M:HEXIN 42 Core Layout Duri ng Loadi ng 74
M:INHEX 43 Overlay Loader Operational Labels 74
M:CKREST 43 Map 75
M:LOAD 44 Ca II i ng Overlay Loader 77
M:OPEN 45 Control Command Format 78
M:CLOSE 45 Control Command Repertoire 78
M:DKEYS 46 BLOCK 78
M:WAIT 46 LIB 78
M:SEGLD 46 MS ML MP 79
M:DEFINE 47 TCB 79
M:ASSIGN 48 ROOT 80
M:RES 50 LD 80
M:POP 50 LB 80
M:OPFILE 51 INCLUDE 81
M:RSVP 51 MD 81
M:DOW 52 SEG 81
M:COC 53 PUBLIB 82

END 82
Loader Error Messages 82

5. I/O OPERATIONS 56

Byte-Oriented 56
I/O Initiation 56
End Action 56 8. RAD EDITOR 84
Logical/Physical Device Equivalence 57
RAD Files 57 Introduction 84

Sequential Files 57 Permanent RAD/Disk Pack Area Organization_ 84
Random Files 58 Data Files 84

RAD File Management 59 Library Files 84
RAD Editor Operational Labels 86

Call ing RAD Editor 86
6. REAL-TIME PROGRAMMING 60 Control Command Format 86

Control Command Repertoire 86
Foreground Programs 60 ADD 86

Resident Foreground Program 60 DELETE 87
Semiresident Foreground Program 60 FCOPY 88
Nonresident Foreground Programs 60 LADD 88

Mon i tor Tasks 60 LREPLACE 88
Power On Task 60 LDELETE 89
Power Off Task 61 LCOPY 89
Machine Fault Task 61 LSQUEEZE 89
Protection Violation Task 62 MAP 89
Multiply/Divide Tasks 62 DUMP 89
Input/Output Tasks 62 SAVE 90
Control Panel Task 62 RESTORE 90
RBM Control Task 62 SQUEEZE 90

Scheduling Resident Foreground Tasks 62 CLEAR 90
Loadi ng Foreground Programs 63 TRACKS 90

Loading Resident Foreground Programs ___ 65 END 90
Loading Nonresident Foreground Programs _ 65 RA D Ed i tor Error Messages 90

iv

9. UTILITY 94 SUPPRESS 106
SEQUENCE 106

Introduction 94 Uti I i ty Error Messages 106
Utility Program Organization 94
Input/Output Error Messages 95
Control Routine Operational Labels 95

Calling Utility 95 10. PREPARING THE PROGRAM DECK 112
Control Command Format 96
Control Function Commands 96 Extended Symbol Examples 112

FBACK 96 Assemble Source Program, Listing Output
FSKIP 96 and Bi nary Output 112
MESSAGE 96 Assemble In Batch Mode, Listi ng Output
PAUSE 96 and Binary Output with Symbol
PRESTORE 97 Cross-Reference 112
REWIND 97 Assemble, Load, and Go from User Defined
RBACK 97 OV File, Listing Output 112
RSKIP 97 Assemble Source Program, Listing Output,
UNLOAD 97 Load and Go 113
END 97 Basic FORTRAN IV Examples 113
WEOF 97 Compile Multiple Programs 113
ASSIGN 97 Compile, Listing Output, Load and Go ___ 113

COpy Routine 97 Compile and Execute Foreground Program __ 114
COpy Operational Labels 98 Segmented Program Examples 114
COpy Operating Characteristics 98 Assemble Segmented Background Program,
Calling COpy 98 Load and Go 114
COpy Control Commands 98 Load and Execute Multiple Object

OPLBS 98 Modules 115
COPY 99 RAD Editor Examples 115
VERIFY 99 Build Public Library 115

DUMP Routine 99 Load Routines in User Library 116
DUMP Operational Labels 100 Utility Example 116
DUMP Operati ng Characteristics 100 Create A Control Command File 116
Call ing DUMP 100
DUMP Control Command 100

DUMP 100
Object Module Editor Routine 100 1l. SYSTEM GENERATION AND SYSTEM

Object Module Editor Operational Labels 100 LOAD 117
Object Module Editor Operating

Characteristics 101 Introduction 117
Calling Object Module Editor 101 SYSGEN 117
Object Module Editor Control Commands __ 102 Initial Core Allocation 117

LIST 102 Minimum Configuration 117
MODIFY 102 Optional Routines 117
INSERT 102 Core Memory Allocation 118

Record Editor Routine 102 RAD Allocation 118
Record Editor Operati ona I Labels 102 File Control Table Allocation 121
Record Editor Operating Characteristics __ 102 Operational Label Assignments 122
Ca II i ng Record Edi tor 103 Input Parameters 122
Record Editor Control Commands 103 SYSGEN Output 128

LIST 103 SYSLOAD 128
MODIFY 103 System Load 128
DELETE 103 ALL Option 128
INSERT 103 UPD Option 131
CHANGE 104 Initial Loading of System Processors 132

Sequence Edi tor Routine 104 Public Library Creation or Updating 132
Sequence Editor Operational Labels 104 Resident Foreground Creation or
Sequence Editor Operating Updating 133

Characteristics 104 Nonresident Foreground Creation or
Ca II i ng Sequence Editor 105 Updating 133
Sequence Editor Control Commands 105 System Processors and Library Creation ___ 133

IDENT 105 SYSLOAD Alarms 133
DELETE 105 Rebooti ng the System from RAD 133

v

12. DEBUG 135 COC Operation 157
Automatic Dialing 158

Introduction 135 Restrictions 158
General Description 135
Foreground User Restrictions 135

G. SYSGEN AND ASSEMBLY TIME OPTIONS
RBM and Foreground User's Interface 135

159

Memory Requirement and Insertion Block Hexadecimal Corrector Cards 159
Definition 135

Debug Control 135
Three-Character Processor Search 159

Debug Commands 136
D 136 H. MEMORY REQUIREMENTS 160
I 137
S 137 Core Space Requirements for RBM 160
X 138 Core Space Requirements for the
R 138 RBM Processors 160
T 138 RAD Space Requirements 160
P 139
C 139

I. CALCULA TING THE RBM SIZE
K 139

162

M 139
J. DEBUG EXPANSION OF INSTRUCTIONS

B 139
163

E 139
Expansi on of Inserted Instructi ons

Q 139
163

Expansion of Moved Instructions
Debug Error Messages 140

163

INDEX 166 K. DEBUG INSERTION STRUCTURE 164

L. DEBUG SNAPSHOT CALLING SEQUENCE 165

APPENDIXES

A. SIGMA 2/3 STANDARD OBJECT LANGUAGE 141 FIGURES

Introduction 141 1. Operati ng System 1

Description of Object Modules 141 2. Job Stack Example 17

General Description 141 3. Use of GO and OV Files 19

Binary Object Record Format 141 4. RAD Allocation 59

Format of Record Header 142 5. Foreground Priority levels 64

Load Item Format 142 6. Task Entrance Format 69

Format of Load Item Control (Header) 7. General Overlay Structure Example 73

Word 142 8. Sample Overlay Cluster Configuration 74

Summary of Load Item Formats 142 9. Load Map Format 75
10. RBM Core Memory Allocation Example 119
11. Background Core Allocation Example 120

B. SYSTEM ZERO TABLE AND CONSTANTS 147 12. Core Layout After Absolute Load 121
13. Core Layout After SYSGEN and SYSLOAD __ 121

C. RBM SYSTEM ABORT CODES 151 A-l. Typical Object Module of M Records 141
A-2. Displacement Chain Format 146

Overlay Loader Abort Codes 151
loader I/O Abort Message 151

D. CONTROL COMMAND DIAGNOSTICS 154
TABLES

l. RAD/Disk Area 3

E. SIGMA 2/3 RBM OPERATIONAL LABEL
2. Standard Background Operational Labels __ 10

USAGE 155
3. Standard Device Unit Numbers 12
4. RAD Area Mnemonics 12
5. RBM System Processors 17

F. CHARACTER-ORIENTED COMMUNICATIONS 6. Monitor Messages 21
(COC) EQUIPMENT HANDLER 157 7. Transfer Vector for Monitor Services 28

8. Return Status from M:IOEX 30
Description of cac Package 157 9. Return Status from M:READ, M:WRITE,

M:COC 157 M:CTRL 33
RCOC 157 10. I/O Completion Codes 34

vi

1l. Status Returns for M:COC 54 25. Record Editor Error Messages 110
12. Completion Codes 54 26. Sequence Editor Error Messages 111
13. Line Status 54 27. SYSGEN Input Options and Parameters 123
14. Line Mode 54 28. SYSGEN Error Messages 129
15. Summary of Edi ting Operations 55 29. Routines and Idents for RBM Part 2 130
16. Standard Device Unit Numbers 57 30. SYSLOAD Alarms 134
17. T ask Control Block (TCB) 66 B-l. Monitor Zero Table 147
18. Loader Error Messages 83 B-2. Standard Constants 148
19. RAD Editor Error Messages 91 B-3. Monitor Constants 149
20. RAD Restoration Messages 93 C-l. RBM Abort Codes 153
2l. I/O Error Messages 106 C-2. Overlay Loader Abort Codes 153
22. Control Function Command Error Messages __ 107 H-l. Core Requirements for Additiona I Software ___ 160
23. CO PY Error Messages 109 H-2. RAD System Area Requirements 160
24. Object Module Editor Error Messages 110 I-l. Device Type Table Allocations 162

vii

GLOSSARY

active foreground program: a foreground program is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system via a
!XEQ control command.

background area: that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program executed under Monitor
control in the background area when no interrupts are
active. These programs are entered through the batch
processing input stream.

batch processing: a computing technique in which similar
programs are grouped together and processed or exe­
cuted in a single run so as to effect efficient uti I iZa­
ti on of the computer.

channel status table: a table of five words per SYSGEN­
defined I/O channel that reflects the hardware condi­
tion of each I/O channel.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
al I registers and other "environment" so that the job
can be restarted at its interrupted point.

clock counter: a memory location that records the progress
of real time or its approximation, by accumulating
counts produced by a (clock) count pulse interrupt.

close: terminating the use of an item (such as a fi Ie) and
performing certain clean up operations to provide for
its future reuse or the reuse of its resources.

control command: any control message other than a key-in.
A control command may be input via any devi ce to
whi ch the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-in.

count zero interrupt: an interrupt level that is triggered
when an associated (clock) count pulse interrupt has
produced a zero result in a clock counter.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as interrupts and
real-time programs.

device-file number: a logical method of referring both to
a physical peripheral device and to a collection of in­
formation about the devi ceo The devi ce fi Ie number
indicates the order in which devices are initially de­
fined at SYSGEN. For example, the first device
defined must always be a keyboard printer (DFN 1).

viii

devi ce name: an identifier used at SYSGEN time for an
actual physical I/O device that is composed of two
elements: a device type whi ch is a two-character code
for a particular class of peripheral devices, and a de­
vice number which is a two-digit hexadecimal repre­
sentation of the physical unit number associated with
a device.

device unit number: an integer value coded into a
FORTRAN IV program to reference peripheral devices.
Standard devi ce un it numbers can be equated to devi ce
file numbers (see above) either at SYSGEN time or
through !ASSIGN commands.

dictionary: a directory of names and addresses of files or
other catalogs on a random access device that enables
the system to locate an item when given only its name.

disabled: the condition of an interrupt level wherein the
level may advance from the armed to the waiting state
when triggered by an interrupt pulse, but the level
cannot cause a program interruption until it is enabled;
it thus remains in the waiting state until it is allowed
to interrupt the program.

disarmed state: the state of an interrupt level that cannot
accept an interrupt input signal.

disk pack: a secondary storage system of removable rotating
memory. For most RBM purposes, disk pack and RAD
are synonymous unless otherwise noted.

enabled: the condition of an interrupt level wherein
the level is not inhibited from advancing from the
waiting state to the active state except for priority
considerati on s.

end action: that action that takes place at the completion
of an I/O operation. This usually includes the entry
of a special routine that was specified when the re­
quest was made.

end record: the last record to be loaded in an object
module or load module.

error severity level code: a code indicating the severity
of error noted by the processor. This code is con-
tained in the final byte of an object module.

execution location: a value replacing the origin of a
relocatable program that changes the address at which
program loading is to begin.

external interrupt: one of the class of interrupts that are
associated with special systems equipment. These
interrupts are "external II to the basi c computer sys­
tem and are associated with functions that are de­
fined according to the requirements of a particular
installation.

external interrupt inhibit: the bit, in the program status
doubleword, that indicates whether (if 1) or not (if 0)
all external interrupts are inhibited.

external reference: a reference to a declared symbolic
name that is not defined within the module in which
the reference occurs. An external reference can be
satisfied only if the referenced name is defined by an
external load item in another module.

file control table: contains information about all device
files in the RBM system and is indexed by device-file
number.

file name: a name for a permanent file that is defined
either at SYSG EN or later through the RAD Editor.

foreground area: that portion of memory dedicated speci­
ficially for RBM, service routines, and foreground
programs.

foreground program: a program that executes in the
foreground area of core and can utilize all privileged
services.

foreground task: a body of procedural code that is associ­
ated with (connected to) a particular interrupt.

GO file: a RAD file of Relocatable Object Modules
(ROMs) formed by a processor. This is a default
input file when no file name is specified.

granule: the minimum physical amount of data transferred
in a read or write operation from/to random RAD or
disk pack files. A granule is usually synonymous with
a sector on a device, but may be defined (on a file
basis) to be equivalent to a partial sector, one sector,
or several sectors.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a ! FIN control
command. The idle state is ended by means of an
S key-in.

inhibited interrupt: a condition of an interrupt that pro­
hibits it from entering the active state.

input/output interrupt: an interrupt triggered by the stan­
dard I/O system of the computer.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system.

internal interrupt: one of the class of interrupts that are
supplied with a standard computer system, or are op­
tional additions associated with dedicated functions
(such as power fail-safe). These interrupts are
lIinternal ll to the basic computer system.

interrupt trigger signal: a signal that is generated, either
internal or external to the CPU, to interrupt the nor­
mal sequence of events in the central processor.

I/O control table: a table containing the device-specified
i nput/ output control doub I ewords and other i nformati on
necessary for RBM I/O services. There is a one-to-one
correspondence between the I/O control tabl e and fi I e
control table.

I/O control subtable: same as I/O control table except
that the su btab lei s RAD speci fi c.

library input: input from the device to which the LI
(library input) operational label is assigned.

library load module: a load module that may be combined
(by the Overlay Loader) with relocatable object mod­
ules, or other library load modules, to form a new
executable load module.

link editing: the process of combining separately compiled
or assembled program modules, relocating them, I ink­
ing them to defined library routines, and producing
an absolute executable load module.

loading: the process of reading an executable program {see
link editing above) from secondary memory to absolute
locations in main memory.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using
Relocatable Object Modules and/or library object
modules as source information.

logi cal devi ce: a peripheral devi ce that is represented in
a program by an operational label (e. g., BI or BO)
rather than by a specific physical device name.

memory protection: the use of the optional protection fea­
ture that keeps unprotected background memory from
altering protected foreground meaning.

memory write lock: a one-bit write-protect field optionally
provided for each 256-word page of core memory
addresses.

Monitor: a program that supervises the processing, loading,
and execution of other programs.

nonresident foreground program: a foreground program
expl icitly called from secondary memory that resides in
the nonresident foreground area of core memory during
execution. The space thus occupied is considered
lIactive ll and is protected by the Monitor from inter­
ference by other activiti es.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which
the output of a compi ler or assembler is expressed.

object module: the series of records containing the
load information pertaining to a single program

ix

or subprogram. Object modules serve as input to
the Overlay loader.

open: the preparing of an item (such as a fi Ie) for initial
use.

operational label: a symbolic name used to identify a logi­
cal system devi ceo

operational label table: there are two tables: one for
foreground and one for background. The tables con­
tain the two-character operational labels that are used
for reference by the RBM servi ce routines and connect
an operational label to a devi ce fi Ie number.

option: an elective operand in a control command or pro­
cedure call.

Overlay Loader: a processor that links and absolutizes
elements of programs.

overlay program: a segmented program in which the seg­
ment currently being executed may overlay the core
storage area occupied by a previously executed
segment.

OV file: a RAD file that contains an executable program
formed by the Overlay loader if a program fi Ie name
was not specified at load time. Used primari Iy to test
new programs or new versions of programs. This is a
default file when no output file is specified.

physical device: a peripheral device that is referred to by
a "name" specifying the devi ce type, I/O channel,
and device number (also see "logical device").

postmortem dump: an optional listing of the contents of a
specified area of core memory, usually following the
abortive execution of a background program.

primary reference: an external reference that must be
satisfied by a corresponding external definition (capa­
ble of causing loading from the System Library).

priority level: priority level of a task is dependent on the
position of its associated hardware interrupt in the
priority chain.

RAD/disk areas: the allocation and definition of a RAD
into specifi c areas during SYSGEN, each of whi ch is
labeled with a two-character mnemoni c to expedite
file management.

Rapid Access Data (RAD) storage system: a secondary stor-
age system of rotating memory. For most RBM pur-
poses, RAD and disk pack are synonymous unless
otherwise noted.

real-time processing: data processing designed so that the
results of the operations are made available in time to
influence some process being monitored or controlled
by the computer system.

x

reentrant: that property of a program or subrouti ne that
enables it to be interrupted at any point, employed by
another user, and then resumed from the point of
interruption. Reentrant programs are often found where
there is a requirement for a common store of publ ic
routines that can be called by any user at any time.
The process is controlled by the Monitorwhich preserves
the routine's environment (registers, working storage,
control indicators, etc.) when it is interrupted and
restores that environment when the routine is resumed
for its initial user. A reentrant routine never stores
any intermediate values within itself.

Relocatable Object Module: a program or subprogram that
may be relocated and link edited to operate anywhere
in core; that is, does not have absolue addressing.

resident foreground program: a foreground program that is
automati cally loaded into a fixed area of foreground
core memory every time the system is booted in.

secondary reference: an external reference that mayor
may not be satisfied by a corresponding external
definition (not capable of causing loading from the
system library).

secondary storage: any rapid access storage medium other
than core memory (e. g., RAD or disk pack).

segment loader: a Monitor routine that loads overlay seg­
ments from RAD storage at execution time.

semi resident foreground program: a foreground program
explicitly called from secondary memory that re­
sides in the resident portion of core memory during
execution.

servi ce routines: Monitor-suppl ied services and opera­
tions that can be called by an executing foreground
program, or else by an executing background program
(except for certain privi leged function dedicated to
foreground use).

source deck: a card deck comprising a complete program
or subprogram in symbolic EBCDIC format.

source language: a language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compiler.

symbolic input: input from the device to which the
SI (symbolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that

symbolic references may be made to it even though
its value may be subject to redefinition.

system library: a group of standard routines in relocatable
object language format, any of whi ch may be included
in a program being created.

Task Control Block (TCB): part of the load module that
contains the area required for context storage. The
TCB is task-associated.

temporary files: those files that exist only until the current
job step ends. They may, or may not, have existed
prior to the start of the job.

Temp Stack: an area of memory optionally created by
the Overlay Loader for a user program and used by the
Monitor and System Library routines.

unsolicited key-in: information entered by the operator via
a keyboard in response to a Control Panel interrupt.

xi

1. INTRODUCTION

RBM CHARACTERISTICS

The Sigma 2/3 Real-Time Batch Monitor (RBM) is the major
control element in the operating system. It supervises and
services simultaneous foreground programs and.background
batch programs without interfering with the real-time re­
sponse capabi I ity of the foreground.

RESIDENT SECTION

The resident portion of RBM consists of the following parts:

• Several independent tasks that are connected to the
hardware interrupts (e. g., the real-time tasks). The
tasks are not reentrant. They can communicate with
each other and may use some of the Monitor service
routines.

• Several reentrant Monitor service routines that can be
used by any task in the system. These are described
in Chapter 4.

• Standard system constants and tables (see Appendix B).

• Input/output constants and status information.

Control Panel Interrupt

RBM Control Task f--- RBM Overlay
Subtasks

Monitor Service Routines

Resident Foreground

I
I
I
I
I

r-

-

NONRESIDENT SECTION

The nonresident part of RBM consists of the system initiali­
zation portion that is loaded at the time the system is cre­
ated, Monitor service routi nes, and device-dependent I/O
routines for which a response is not critical. It selects the
optional features of RBM and initializes the input/output
constants.

SYSTEM ENVIRONMENT

In addition to the Monitor itself, the hardware-software
environment of the operating system consists of the followi ng
major elements:

• Sigma 2/3 hardware including (a) the required system
RAD, (b) the selected number of hardware interrupts
connected to vari ous foreground tasks in user-determ i ned
priority sequence, (c) dedicated and commonly shared
I/O devices, and (d) optional secondary storage modules.

• Partitioned core memory (see Figure 1) divided into

r---

......
r---

o A protected foreground area reserved for (l) resi­
dent real-time foreground programs, (2) a single

Job Control Processor

Background Processor

Nonresident Foreground
~

Resident Nonresident

Figure 1. Operating System

Introduction

nonresident foreground program, (3) Monitor tasks
that must respond to high -pri ori ty interrupts,
(4) Monitor service routines, and (5) optional
routines (such as a Publ ic Library) that are used
by both foreground and background programs.

o An unprotected background area used by back­
ground (non-real-time) processors, translators, and
batch users I programs, and occasionally by fore­
ground programs requiring temporary use of addi­
tiona� memory. (In this case the foreground will
checkpoi nt the background.)

The system RAD,t allocatable into permanent and tem­
porary fi les. The permanent fi les contain all of the
background RBM processors such as Basic FORTRAN IV,
Extended Symbol, RAD Editor, etc., plus RBM itself.
They may also contain user data and optional resident
and nonresident foreground programs that can be called
into protected memory for processing. Temporary files
are normally used as intermediate scratch areas by
processors or user programs.

• Up to 137 (l07 for Sigma 3) user foreground tasks that
can be connected to interrupts. Examples of foreground
tasks are process control operations, real-time data ac­
quisition and control, and low-speed telemetryapplica­
tions. The RBM Control Task is connected to the lowest
priority hardware interrupt in the system so that no
background processing can delay foreground tasks.

I • Overlay Loader for linking and absolutizing segmented
foreground and background programs that enables back­
ground processors and user programs to overlay them­
selves in core storage, and thus permitting programs of
virtually unlimited size to be executed.

FOREGROUND (High-level Priority Response)

Within the framework of the user-determined hardware
interrupt priorities, foreground programs or tasks operate as
independent entities, and the Monitor generally makes no
attempt to interject itself between these tasks and their real­
time functions. The Monitor services the foreground only
on request, such as a call to one of the Monitor service rou­
tines. The principal foreground services of the Monitor are to

• Respond to I/O interrupts.

• Respond to an operator's console request (such as
queuing).

• Supervise RAD file activity.

• Optionally, supply a software version of multiply/
divide functions for configurations without multiply/
divide hardware.

t For RBM purposes, RAD and disk pack are synonymous
unless specifically stated otherwise.

2 RBM Characteristics

• Load a foreground program into memory from the RA D
on request.

• Provide the foreground with standard constants (see
Appendix B).

• Make available a "mailbox" area of 32 cells of mem­
ory for communication between two or more foreground
programs.

The interrupt priority sequence (described in detail in the
Xerox Sigma 2 and Sigma 3 Computer Reference Manuals) is
the basis for the priority level of tasks in the RBM system.
That is, the priority level of a task is dependent on the
position of the associated hardware interrupt in the inter­
rupt priority chain. Background jobs in the system all have
the same priority level. A background job is not connected
to any interrupt level in the system, i. e., its priority is be­
low all hardware interrupt levels and is processed serially.

BACKGROUND (Low-Level, No Priority)

The primary function of the Monitor is to supervise and con­
trol all those operations that take place in the unprotected
background area by the following means:

1. Use only avai lable foreground idle time for back­
ground processing.

2. Interpret control functions from control command card
images via the Job Control Processor.

3. Supervise the loadi ng and execution of all back­
ground jobs and activities in unprotected memory.

4. Provide simple background schedul ing (first-in,
first-out).

5. Provide I/O services for the background job stack.

6. Inform the operator on the status of peripheral device
operations.

7. Test all background operations and processes for fore­
ground protection violations and prevent the background
from altering or delaying foreground response or from
using dedicated I/O devices.

Monitor processors and permanent user processors may be
loaded onto permanent RAD fj les and then executed by
control command. Programs may also be loaded onto tem­
porary RAD files for the duration of the present job.

All programs must exist on the RAD in absolute core image
form for execution. Relocatable programs, consisting of
a root and one or more overlay segments linked by ex­
ternal references, must be created by the Overlay Loader
to link all modules and create the proper overlay struc­
ture for execution.

It is possible to create programs consisting of a root and one
or more overlay segments through use of the Absolute Loader
if there are no external references (see the !ABScommandin
Chapter 2 for other restrictions).

Two levels of logical (rather than physical) device refer­
encing are provided, enabling system configurations to
change or expand without reprogramming. Further, through
many device-independent features and use of standard media
formats, input and output can be directed to card equipment,
paper tape equipment, or magnetic tape without changes in
the user's program.

For maximum flexibil ity and control of input/output, the
user can optionally specify his own 10CDs and order bytes,
perform independent error recovery, and be informed by
RBM when an I/O operation has terminated. Alternatively,
for greater ease of programming and device independence,
the RBM wi II create the 10CDs and order bytes and per­
form standard error checki ng and recovery.

When multiprogramming with foreground tasks and back­
ground jobs, the foreground has access to all privileged in­
structions in the Sigma 2/3 computers. The background is
checked by both hardware and software to provide complete
protection of a foreground program's use of core memory and
peripheral operations.

SECONDARY STORAGE MANAGEMENT

The RBM operating system provides use of the RAD or disk
packs for

• Temporary and permanent fi les.

• User and system fi les.

•

•

Sequential fi les (pseudo tape, where RBM performs all
bookkeepi ng).

Random-access fi les (RBM performs I/O transfer and con­
trols file limits, but user controls relative addressing).

RAD/DISK PACK AREAS

The concept of RAD areas is a convention created primarily
to offer a scheme to expedite file management. RAD areas
are allocated during system initialization (see RAD Alloca­
tion in Chapter 11) and are labe led with two alphanumeric
characters, usually from the followipg list:

SP UL

SD BT

SL CP

UP Dn

UD Xn

where n is a hexadecimal digit, and Dn is an area that may
contain any data the user desires including program files.

Certain labels of the list above have the special meaning
given in Table 1.

Mnemonic

SDt

UP

Xn

Table 1. RAD/Disk Areas

Meaning

System Processor area. Contains RBM and
user-selected processors from the list given
in Table 5 (the Overlay Loader is a man­
datory processor). This area is searched
whenever ei ther a system processor or user
processor is req uested .

System Data area. Contains fi les neces­
sary for the execution of RBM.

System Library and User Library areas.
These are the only areas from which the
Overlay Loaderwill load library routines.

User Processor area. Contains resident
foreground programs, foreground tasks,
nonresident programs, semi resident pro­
grams, and background programs. Only this
area and SP area are searched when a pro­
cessor is requested.

Background Temp area. Used for alloca­
tion of temporary fi les.

Checkpoint area. Used to store the back­
ground envi ronment when a background
program is checkpointed by a foreground
process.

Xn areas are similar to Dn areas except
that the user has the option to perform his
own management of the entire area, thus
allowing access to data arranged in non­
standard formats. No disk pack verifica­
tion is performed for a Mount Area key-in
(see" Unsolicited Key-Ins" in Chapter 3).

tThese areas receive default allocations (see Table 27).
Note that the SP and SD areas must be present in the
system.

PROCESSOR FI LES

Processor fi les are stored ei ther as a si ngle segment or as an
overlay structure. The Overlay Loader stores the files on
the RAD in core image form, ready for loading, and abso­
lutized for the space they will occupy at execution. The
processorfiles are loaded for execution via a processor con­
trol command. When allocating files, any file defined in
an area with a P as the second character of the mnemonic
is considered a processor file.

RBM Characteristics 3

LI BRARY FI LES

Library files contain subprograms in a relocatable form.
The fi les have spec ified entry points and are in the form of
binary card images in Standard Object Language.

There is one library file for the system area mnemonic SL,
and one for the user area mnemonic UL. The Overlay
Loader can load selectively from one or both, in either
order of priority. Although records within a subprogram
are loaded sequentially, access to the individual subprogram
is on a random (direct access) basis.

DATA FILES

Permanent data fi les may contain any kind of data and may
be accessed sequentially or randomly, depending on how
they were created. The user is responsible for reading them
accordingly. RBM maintains no details on content, address­
ing, or record size. When allocating files, any file defined
in an area with a D as the second character of the area
mnemonic is considered a data file.

FILE NAME

Only permanent RAD files have a file name. Some names
are entered into the dictionary for the appropriate area at
System Generation; others are entered later by the RAD
Editor. After the name is in the dictionary, an !ASSIGN
control command or a call to M:ASSIGN can equate either
an operational label or a FORTRAN device unit number to
this fi Ie name.

OVERlAY CAPABILITIES

Under RBM, the Overlay Loader can be used to create over­
lay programs for later execution in either the foreground or
background. t The overlay programs can be permanently
entered (as a file) into either the System or User Processor
areas, or into a temporaryoverlayfile (OV). Since they are
stored on the RAD in absolute core image format, they can
be quickly loaded into memory for execution.

Each segment is created by the Overlay Loader from one or
more object modules (assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined in the discussion of the
Overlay Loader. Duri ng execution, the Monitor service
routine M:SEGLD is used to control both the loading and
the transfer of control between vari ous segments.

tFor a complete description of the Overlay Loader, see the
Overlay Loader chapter.

4 RBM Characteristics

CHECKPOINT/RESTA RT

The checkpointing feature permits a partially processed
background job to be saved in secondary storage along with
all registers and other environment. The vacated back­
ground space is set to protected status and is then available
to the interrupti ng foreground task for either i nstructi ons or
temporary data storage.

Checkpointing ensures continuity to the partially completed
background job by not repositioni ng any background periph­
eral devices, permitting all current background I/O activity
to complete, and writing all of the background space onto a
prespec i fi ed RA D area.

Restart takes place when the previously checkpoi nted back­
ground program is reloaded from the RAD and continues
execution as though the interruption never took place.

PUBLIC LIBRARY

All RBM service routines and Sigma 2/3 system library rou­
tines (FORTRAN and mathematics libraries) are reentrant.
If an RBM system has several real-time foreground tasks that
use a number of the same subroutines, the collectively-used
set of subroutines can be loaded together into what is termed
a Public Library. Thereafter, whenever the Overlay Loader
processes a foreground or background program that references
one of the IIpublic ll routines, it sets the appropriate branch
to the Public Library. The Public Library is loaded into core
whenever RBM is rebooted from the RAD.

When one of the Public Library routines needs temporary
scratch space, it requests space (via a call to M:RES) from
the temporary stack of the task that is calling the Public
Library routine. When the library routi ne exits, the space
is released via a call to M:POP.

REENTRANT ROUTINES

As used in Sigma 2/3 software, IIreentrantll means that a
subprogram (never a task) may be interrupted during execu­
tion, called again by the interrupting task, and later re­
entered and continued from the location of the former task.
This is a last-in, first-out kind of reentrancy in keeping
with the Sigma 2/3 priority interrupt system.

ACCOUNTING AND ElAPSED TIME

Background job accounting and provisions to limit the exe­
cution time of a background job can be accomplished via
Clock 1. (The use of Clock 1, an interrupt device, is
optional at SYSGEN initiation.) To correctly calculate
the elapsed time for the background, the Monitor M:SAVE
routi ne records the start ti me of the fi rst interrupti ng fore­
ground task and triggers the RBM Control Task to calculate
the actual foreground run time. By performing this calcu­
lation at the priority level of the RBM Control Task, rapid
response time for the foreground is maintained.

Clock 1 is also used to I imit the execution time of a back­
ground program. The user may I imit this execution time by
using the ! LIMIT control command, and the RBM Control
Task wi II be tri ggered every 16 seconds to provide watchdog
services on the background program.

When a ! JOB control command is read, an entry is created
in the accounting fi Ie (RBMAL, SD). The entry includes the
start time, user name, and account number. The start time of
the job is then logged on the LLdevice as MM/DD/YR HRMN.

At the completion of each activity, the accumulated elapsed
time since 'the start of the job wi II be logged on the LL
device as ET=MMM.MM (minutes). At the completion of
the job (i. e. , a new! JOB or ! FIN command) the current
date and time and a job recap are logged on the LLdevice as

MM/DD/YR HRMN

FG=MMM.MM,

BK=MMM.MM,

ID=MMM.MM

where

BK represents the total job time. The total time
for a job is defined as the time available to the
background from the time the !JOB control com­
mand is read unti I the next !JOB or! FIN command
is encountered.

FG represents the amount of time used by inter-
rupting foreground tasks during the job.

ID represents the accumulated idle time incurred
within the job. Thiscould be a resultofW key-ins
or the result of an attended job being aborted.

-The time for a background job is recorded in the accounting
file entry for that job. The IDLE account is updated to re­
flect total idle time charges. After the! FIN control com­
mand is read, all idle time is charged to the IDLE account.

The following rules govern the operations of the Accounting
Log:

• A call to M:SAVE switches from the background to
foreground time accumulation.

• A call to M:EXIT switches from foreground accumula­
tion to background accumulation if a background job
is executing.

• A W key-in switches from foreground accumulation to
idle time accumulation. An abort from an attended
job switches the same way. An S key-in switches
back to foreground accumulation from the idle
accumulation.

• A! JOB or ! FIN command writes out total accumulated
times and resets times to zero.

• The ET (elapsed time) represents the total background
accumulation since ! JOB was encountered. ET is
printed out each time CCI is read into the background.

SYSTEM INITIALIZATION AND CREATION

The RBM system creates itself for a particular installation
through a nonresident SYSGEN routine. The permanently
resident, nonoptional parts of RBM are loaded into low core;
next, the RBM initializer is loaded along with the optional
RBM routines and the standard input/output definitions
and tables.

The user then defines RAD areas, optional routines, the pe­
ripheral devices, and operational labels. This is followed
by a definition of the exact bounds on the foreground,
Monitor, and background memory areas, and the size of the
RAD areas. The system is then complete in lower memory.

Once the system is completely defined, routines not needed
wi II be discarded and an absolute rebootable version is
punched on a binary output device (optional) and a reboot­
able version is written onto the RAD. The system initializer
is overwritten by the first background program or real-time
foreground program loaded just below 12K.

If the system must be restarted later, the rebootable version
is loaded from the RAD. A completely new system initiali­
zation is necessary only if some of these standard definitions
must be changed.

When the system is created, a version number is specified
that will be printed on LL at the beginning of each job for
reference.

Protection switches on the 7202, 7204, and 7232 equipment
may be used to permanently protect certain areas of the RAD.

HARDWARE REQUIREMENTS

The minimum configuration required and supported by RBM
for either a Sigma 2 or Sigma 3 is the following:

• Sigma 2 or Sigma 3 CPU with either Internal lOP or
External lOP (Sigma 3 only)

• Memory Parity Interrupt

• Memory Protect Feature

• Hardware Interrupt (for RBM Control Task)

• Core Memory Module (8192 words)

• One Memory Increment (8192 words)

• Keyboard/Printer with Paper Tape Reader/Punch

• RAD Controller

• RAD Storage Unit (0.75 M bytes)

An alternate minimum configuration (for a Sigma 3 CPU with
external lOP only) is a Disk Pack Controller and Disk Pack
Storage Unit to replace the RAD Controller and RAD storage
Unit. Other minimum requirements remain the same.

Hardware Requi rements 5

In addition to the previous list, any items from the list
below can be added for increased performance and will be
specifically supported by RBM. Other items can be added
to this list but will not receive any special RBM support.

Disk Packs

Memory Module

Memory Increment

Keyboard/Pri nter

Paper Tape Reader/Punch (High-Speed)

Card Readers

Card Punches

RADs

9-Track Magnetic Tape

7-Track Magnetic Tape

BCD and Binary Packing Options for 7-Track Magnetic
Tape

Line Printers

Plotters

RBM SUBSYSTEMS

RBM wi II support the subsystems and processors descri bed
below. All execute in the background area of core memory
and the collective set offers maximized utilization of
Sigma 2/3 computer capabilities.

LANGUAGE TRANSLATORS

EXTENDED SYMBOL

The Extended Symbol programming language (and assembler)
provides upward compatibility with basic Symbol in addi­
tion to extended capabilities that include using the RAD
for overlay to reduce core residence requirements.

The processor accepts as input a source program coded in
either Symbol or Extended Symbol, processes it, and out­
puts an object program load module, diagnostic messages,
an optional assembly listing, and an optional cross-reference
listing.

BASIC FORTRAN IV

Basic FORTRAN IV is a one-pass compiler with capabil­
ities extended beyond Basic FORTRAN. It can compile
large source programs by using the RAD for overlay to mini­
mize core residence requirements, and has two floating­
point modes: standard precision and extended precision.

6 RBM Subsystems

SERVICE PROGRAMS

OVERLAY LOADER

The Overlay Loader forms absolute binary overlay segments
for later execution in either foreground or background areas.
If a resident or nonresident program can tolerate a loading
delay of 20 to lOOms, foreground or background programs
of virtually unlimited size can be constructed with the
Overlay Loader despite limitations in available core storage.

RAD EDITOR

The RAD Editor performs RAD allocation for permanent fi les
and generates and maintains directories for the permanent
RAD areas: System Processor area, System Library area,
System Data area, User Processor area, User Library area,
User Data area, and any Dn areas and Xn areas. It a II ows
dumping of files and mapping of all RAD areas, including
checkpoint and temporary areas.

UTILITY SUBSYSTEM

The RBM Utility subsystem provides a universal media copy
routine, object module editor, dump routine, and record
editing by line or sequence number.

CONCORDANCE

The Concordance program provides the user with a listing
of program symbols and all references to these symbols by
source line number. Optional control cards permit inclusion
or exclusion of specified symbols in local, nonlocal, or
operation/directive code sections of the printout. Most of
the options of Concordance are avai lable under Extended
Symbol.

Omission of optional control cards yields a standard Con­
cordance listing containing all program symbols except
standard operation and directive code menmonics.

MISCELLANEOUS

DEBUG

The RBM Debug subsystem provides the user with a debug­
ging tool designed primari Iy for nonsegmented background
programs but with a limited capability for debugging fore­
ground programs. The Debug functions and commands are
described in Chapter 12.

COC

The character-oriented communications (COC) handler pro­
vides communicatlon between Sigma 2/3 real-time programs
and various terminal devices. The COC consists of a con­
troller and from one to eight attached line interface units.
The Sigma 2/3 RBM can accommodate one COCo See Chap­
ter 4 and Appendix F for a more complete discussion of the
COC handler.

RBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context. Terms and
processes not defined belowareexplained in the appropriate
chapter.

TASK

A II task II is an entire set of foreground operations performed
independently of other tasks in the system. It must be con­
nected to one and only one hardware interrupt. A task may
use Monitor service routi nes but must never branch to another
task. One task may trigger the interrupt level of another
task by means of a Write Direct instruction. The prescribed
entrance and exit procedure for all real-time tasks in the
system is described in Chapter 6.

A task logically consists of three parts {that mayor may not
be contiguous in core storage}:

1. A Task Control Block {TCB} that contains status infor­
mation and the contents of the registers from the inter­
rupted task {see Table 27}. The TeB is normally the
first loadable item in the object module.

2. A task body, consisting of a sequence of instructions
executed in response to the task interrupt.

3. A task temporary storage area for use by the Monitor
service routines {and other reentrant library routines}
to provide reentrancy for these routines.

Examples of foreground tasks are

• Real-time foreground tasks connected to external
interrupts.

• Monitor I/O interrupt routine.

• Monitor Control Panel interrupt routine.

• Monitor memory parity and protection violation
routines.

• RBM control routine {for loading, abort, etc.}

A background program can also operate as a single task but
without foreground privi leges.

PROGRAM

A II program II is one or more tasks {and opti ona II y, some
common data storage} that are loaded and controlled as a
unit. Four types of programs exist under RBM:

1. Resident foreground programs consisting of one or more
tasks, perhaps some special routines for receiving I/O
interrupt responses {see "End Action"}, and any com­
mon storage that may be needed.

2. Semiresident foreground programs that are expl icitly
called in from secondary memory and reside in the
resident portion of core memory during execution.

3. Nonresident foreground programs.

4. Background programs, consisting of a single task.

FOREGROUND

II Foreground II refers to real-time or Monitor tasks executed
in protected memory on a real-time basis. Si nce the num­
ber of foreground tasks is limited only by the number of
internal and external interrupts possible in the system, the
fundamental I imitation is the amount of core space avai lable.
However, the use of overlays and nonresident foreground
programs makes the amount of effective foreground space
virtually unl imited, depending only on the severity level
of required response times.

BACKGROUND

II Background" refers to a non-real-time program executed
in available nonprotected memory. The purpose of back­
ground programming is to achieve higher efficiency in the
system by using up the avai lable CPU time not needed by
real-time tasks to maintain foreground programs, or to per­
form other data processing functions.

Background operations may be assembl ies, compi lations,
data processing, or utility operations. The two fundamental
restrictions in using background programming are

1. Sigma 2/3 hardware and the RBM software completely
and absolutely protect resident foreground programs
from a background program in terms of I/O and core
memory usage. Thus, a background program is never
allowed to interfere with real-time foreground tasks:
it must operate in nonprotected memory and use the
Monitor service routines for all I/O or other privileged
operations.

2. Since a background program uses only the CPU time
available after the real-time foreground is satisfied, it
may not be guaranteed any CPU time when foreground
is very active. The background is not allowed to in­
hibit interrupts or do anything else that might interfere
wi th rea I-ti me foreground responsi veness.

JOB

A" job" is defined as consisting of all background activities
or processes that take place between a !JOB command and
the next! JOB command or a ! FIN command {whichever is
encountered first}.

RBM Terms and Processes 7

JOB STEP

A II job step" is defined as the operations performed in setti ng
up and processing a single program within a job stack. A
job step is initiated by calling in a background processor
and ends when the processor exits.

BACKGROUND TASK

A "background task" is an executable version of a single
background process that shares the same restrictions as
other background jobs relative to foreground priorities
and privileges.

MONITOR SERVICE ROUTINES

RBM service routines can be used by real-time foreground
tasks, a background task, or RBM tasks. All routines are
coded in a reentrant manner, and those that require tempo­
rary storage use the temporary stack space associated with
the task that calls the routine (see Chapter 4).

TEMPORARY STACK

The temporary stack (temp stack) is a block of core storage
associated with a particular task and is used by Monitor ser­
vice routines for temporary storage to achieve reentrancy.
An entry in the TCB for a task points to the temp stack
space. When a task is active and using either Monitor ser­
vice routines or the floating accumulator (defined below),
the beginning of the temp stack space for the active task
must be set into core memory location 6 (after the previous
contents of location 6 are saved). Monitor service routine
M:SAVE will set this pointer.

When Monitor service routines or Public Library routines
need temporary space, they can call M:RES to reserve space,
and M:POP must then be called to release the space when it
is no longer needed. Thus, the total temp stack is a func­
tion of the deepest nesting of calls to Public Library routines
and RBM service routines and of the space required for
these routi nes.

FLOATING ACCUMULATOR

This software convention is used extensively by mathematics
library routines and can also be used by any user's program.
The floating-point accumulator is assumed to occupy the
first six locations of the temporary stack space. It is used
like a hardware accumulator, i. e., to bui Id up a cumula­
tive result from single-precision or double-precision real
(floating-point) calculations.

8 RBM Terms and Processes

As a convenience in referencing the floating accumulator,
core locations 1 through 5 are set with pointers to the actual
core locations. This is done when entry is made to the ac­
tive task (by M:SAVE when the routine is used). Therefore,
indirect addressing through locations 1 through 5 will result
in storing, loading, or modifying the actual floating accu­
mulator. The sixth cell of the floating accumulator is used
by the FORTRAN-formatted I/O routine.

RBM CONTROL TASK

The RBM Control Task encompasses a number of subtasks
that control the reading of control commands, loading back­
ground programs, interpreting unsolicited key-ins, and
aborting or terminating a background job. During system
initialization, the RBMControl Task must be assigned to the
lowest priority hardware interrupt.

The RBM Control Task uses the same entrance and exit pro­
cedure and the same type of TCB as a real-time foreground
task. Since its main function is to control background
activity, it has a lower priority than any real-time task.
It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon­
sive control can be made through key-ins. All RBM func­
tions associated with this level operate as subtasks to the
RBM Control Task and are non-reentrant.

NONRESIDENT FOREGROUND

Nonresident foreground programs are real-time programs
not needed in core on a conti nuous basis. They are created
like resident foreground programs and are then written on
the RAD in the user processor (UP) area. An operator or a
resident real-time program can later call one of these non­
resident programs, and a will be loaded and executed like
a permanently resident real-time foreground program with
all the protection and priority privilege characteristics of
the foreground.

COMPRESSED RAD FILES

EBCDIC character codes do not use all possible bit combi­
nations of an eight-bit byte, and some combinations (X'FC'
and X'EC') are therefore available for special coding bytes.
Since EBCDIC information often contains a large number
of "blank" byte strings, a code and a word count are used
to replace an entire string of blanks. Thus, several SO-byte
source cards (usually about 12) can be compressed and
blocked into a 360-byte RAD sector. The RBM Read and
Write routines provide the compression or decompression
feature, and the user program can read or write as though
the fi Ie contained SO-byte card images.

2. CONTROL COMMANDS

The Monitor is controlled and directed by control commands
that initiate loading and execution of programs and provide
communi cati on between a program and its environment.
The envi ronment i ncl udes the Moni tor, backg~ound proces­
sors, the operator, and peripheral equipment.

Control commands have the general form:

!mnemonic specification

where

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
functi on or the name of a processor. It must
immediately follow the ! character without inter­
vening spaces.

specification is a listing of required or optional
specifications. This may include labels and nu­
meric values appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +Xxxx and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal values. Specification fields are
separated by a comma or an equals sign.

In this manual the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets although brackets are not used
in actual control command format.

One or more blanks separate the mnemoni c and specifica­
tion fi elds, but no blanks may be embedded within a field.
A control command is terminated by the first blank after
the specification field. Annotational comments detailing
the specifi c purpose of a command record may be written
following the specification terminator, but not beyond col­
umn 72. Only columns 1-4 are examined to determine the
control command.

The user may insert comment lines within a job stack at any
point where a Monitor control command would be recog­
nized. A comment line contains an asterisk as the first
character of the line. The comment line is listed on the
LL device.

Communication between the operator and the Monitor
is accompl ished via control commands, key-ins, and
messages. Control commands are usually input to the
Monitor via punched cards; however, any input device(s)
may be designated for this function (see !ASSIGN com­
mand). Control key-ins are always input through the
keyboard/printer. All control commands and Monitor
messages are listed on the output device designated as

the listing log (normally a line printer) to provide a
hard-copy history of a job.

JOB CONTROL PROCESSOR (JCP)

Monitor control commands are read from the background
operational label CC unless the operator has requested a
keyboard/printer override through an unsoli cited KP key-in.
All such commands are read by the Job Control Processor
(JCP), a special processor loaded into the background by the
RBM and reloaded into the background following each
job step within a job. When a control command is en-
countered by the JCP, the order of search is

1. Monitor servi ce commands.

2. System processor names.

3. User processor names.

A !JOB command sets all background operational labels to
their standard assignments. All temporary RAD space is set
"unused" and is then available for following job steps.

As the JCP encounters! ASSIGN and I DEFIN E commands
between job steps, it makes appropriate entries in the oper- I
ational label tables and continues to do so until it encoun­
ters a request for a processor. When the requested processor
is read into the background and attains control, this marks
the beginning of a job step.

At the end of each job step (i. e., when the JCP begins
reading control commands at the completion of the previous
job step), all background operational labels associated
with temporary RAD space are set to an undefined status
and all temporary background space is reset to an "unused"
status un less a !TEMP S control command is in effect, whi ch
saves temporary fi les unti I a I TEMP R, I JOB, or ! FIN com­
mand is encountered.

MONITOR CONTROL COMMANDS

ABS The lABS control command causes the Absolute
Loader to read absolute binary programs from the AI devi ce
and write core image copies onto the OV file. The last
(or only) segment to be read must be followed by an ! EOD
command. The binary program(s) following the lABS com­
mand must contain only those load items that are part of the
Sigma 2/3 Absolute Object Language. The program can be
a background program, a processor for the background, or
a real-time foreground program.

A subsequent I XEQ command causes the RBM subtask S:LOAD
to load the core image of the root segment (segment number 0)
from OV into core storage. Subsequent segments (1 - n)
are loaded by the root through the use of M:SEGLD.

Control Commands 9

When an !ABS control command is encountered, the
Absolute Loader reads the absolute deck that follows from
the AI device and writes the core image copy onto the file
to which the OV operational label is currently assigned.
If OV has not been assigned, it will be assigned by default
to the RBMOV fi Ie on the RAD. The program can be exe­
cuted from a permanent SP (system processor) or UP (user
processor) file either by inputting a lI!name ll command
(where "name ll is the name of the file on which the program
was written), or an !XEQ command.

If a multisegment program is loaded, the Absolute Loader
creates an OV:LOAD table at the end of the root. The root
must always be the first load module and each succeeding
load module is assigned a consecutive segment identifica­
tion number, with the first succeeding segment starting
at 11111. In the OV:LOAD table, each segment's load ad­
dress will be at its origin location and its entry address will
be the transfer address generated by the! END card image.

The form of the! ABS control command is

where

size is an optional parameter for background pro-
grams only. It specifies the temp stack size
required for the background program being
loaded. If size is omitted, a temp stack size
equal to the maximum size needed for all Monitor
service routines (80) will be used. The temp stack
will always be allocated at the start of back­
ground, and it is the user's responsibility to origin
his program above the temp stack. For foreground
programs, the size parameter is ignored and the
temp stack pointers must be assembled as part of
the program (i. e., in the TCB).

oplb1 ,oplb2 ·. . are operational labels used by the
program that require blocking buffers (i. e., those
labels that may be assigned to blocked RAD files).
A maximum of 10 operational labels may be speci­
fied. When the program is loaded from the RAD
for execution, the Monitor will ensure that enough
block buffers are available for these specified
labels assigned to blocked files.

Programs loaded under the Absolute Loader are subject to
the following restrictions:

• No external references are permitted.

• The program must be in absolute form.

• Relocatable code may not be imbedded.

ASSIGN The !ASSIGN control command causes either a
new or standard operational label to be equated with a
specified (or temporary) file number. Since operational

10 Monitor Control Commands

labels for the background are reset to the standard values
at the beginning of a job by the Job Control Processor, an
operational label assignment is in effect only until the next
! JOB command is encountered or until it isagain reassigned.

An operational label is a two-character name that is used
as a label in referring to a device-file number. The con­
vention of operational labels is used for the processors or
any other program to make them device-i ndependent, and
also to give some mnemoni c value to the input/output opera­
tions associated with the processors.

Device file numbers are a logical means of referring both
to a physical peripheral device and to a collection of in­
formation about that device; that is, the current file of
information. Device file numbers are defined sequentially
(and remained fixed) in the DEVICE FILE INFO parameter
during SYSGEN (see Table 27).

Standard operational labels can be reassigned to different
device-file numbers during SYSGEN or through !ASSIGN
and! DEFINE control commands. One table of operational
labels is used for the background (see Table 2 below) and
another table is used for the foreground. Device unit
numbers are also stored in the same two tables as binary
integer values.

Tabl e 2. Standard Background Operational Labels

Operational Explanation
Label of Reference I/O Device

AI ABS binary input CR, PT, MT, RD

BI Binary input CR,PT,MT,RD

BO Binary output CP,PT,MT,RD

CC Control command KP,CR,PT,MT,
input RD

DO Diagnostic output Same as LO

Got Execution input (GO) CR,MT,PT,RD

ID Debug ident file RD

LI Library input Same as BI

LL Listing log Same as LO

LO Li sti ng output LP,KP,MT,RD

OC Operator's console KP

OV
t

Overlay (temporary) RD

PItt Processor input RD

PM Punch RBM Cp, PT ,MT

Table 2. Standard Background Operational
Labels (cant.)

Operati ona I Explanation
Label of Reference I/O Device

SI Symbolic input KP,CR, PT,MT,
RAD

S2
t

Sigma 2/3 procedures RD

UI Update i npu t CR,PT,MT,RD

UO Update output PT, MT, RD

Xlttt Extended Symbol MT,CR,RD

X2ttt Overlay Loader, RD
Extended Symbol

X3
ttt

Extended Symbol RD

X4ttt Utility (verify) RD

xsttt Util ity (prestore) RD

tThese operational labels, if required by a processor,
are automatically assigned to permanent files in the
system data area by the Job Control Processor.

ttThe PI operational label is assigned to files in the
System Processor and User Processor areas by the Job
Control Processor.

tttThese operational labels are automatically assigned
to background temporary RAD files, with the file defi­
nition appropriate to the background processor being
executed. These definitions are made from a table in
the Job Control Processor that is selected by the first
three characters of the processor name.

The standard foreground operational labels are as
follows:

Operational
Label

BO

AL

Expl anation of
Reference

Binary output

Accounting log

I/O Device

CP,PT,MT

RD

An assignment to file zero means that the operational label
is not effective, and all references to this operational label
result in a no-operation unti I it is reassigned. Note: some
background processors (e. g., Utility) do not allow use of
active operational labels assigned to fi Ie zero. See
Appendix E for a complete description of operational label
usage.

!ASSIGN commands can appear anywhere within the con­
trol command stack (except within a job step) and take
effect immediately. That is, if the CC operational label is
reassigned, the very next control command is read from the
newly assigned device (unless the KP override has been
imposed by an unsolicited key-in). The !ASSIGN com­
mand is used for both foreground or background operational
labels. (The operator must key in FG before assigning a
foreground operational label.)

There are three forms of the !ASSIGN command. Form 1 is

!ASSIGN oplb = file numberL F]

where

oplb is either a two-character al phanumeri c name
in the foreground or background operational label
table (or is to be placed in the table), or a
FORTRAN device unit number, indicated by the
prefix F: preceding the device unit number (see
Table 3).

file number is the device-file number for a physical
device in the system (created at SYSGEN).

F when present, declares that the assignment is to
be included in the foreground operational label
table. Otherwise, it is assumed to be in the back­
ground operational label table, and the file num­
ber must also be a background file number.

Form 2 of the !ASSIGN command is

!ASSIGN oplb =file name ,area mnemonic [, F]

where

oplb is an operational label or a device unit num-
ber identified by the F: prefix.

file name is the name of an existing RAD file. The
RAD fi Ie is rewound if it is blocked or compressed.
Only permanent RAD files can have a file name.
Once the file name is entered in the dictionary
by SYSGEN or RAD Editor, an !ASSIGN control
command or call to M:ASSIGN can equate either
an operational label or FORTRAN device unit
number to this file name.

area mnemoni c specifies the area to search for the
filename, usually from the areas listed in Table 4.

F indicates that the assignment is to be included
in the foreground operational label table.

Monitor Control Commands 11

Table 3. Standard Device Unit Numbers

Device Unit
Number Standard Assignment

101 Keyboard/printer input

102 Keyboard/pri nter output

103 Paper tape reader

104 Paper tape punch

105 Card reader

106 Card punch

108 Line printer

Table 4. RAD Area Mnemonics

Code Meaning

SP System Processor area

SO System Data area

SL,UL System and User libraries

UP User Processor area (user tasks and
programs and background processors)

BT Background Temp area

CP Checkpoi nt area

On Data area(s)

UD User Data area

Xn Similar to On areas but no disk pack
verification performed

Form 3 of the !ASSIG N command is

!ASSIGN oplb = oplb [, F]

Examples:

Form 1: !ASSIGN SI = 3

!ASSIGN F: 105 = 3

Form 2: !ASSIGN OV =FILE1, UP

Form 3: !ASSIGN LI = BI

ATTEND The !ATTEND control command indi cates that
RBM is to go into a wait condition on any abort from the
background, and then read and process the next control com­
mand encountered when background processing continues
after an unsolicited key-in. Its primary purpose is to offer
improved recovery point procedures. If an abort occurs
without this control command being specified, JCP will re­
set the CC operational label to the standard value, skip all
control commands, binary records, or data until it finds a
new !JOB or ! FIN command, and wi II not pause for opera­
tor intervention. In this "skip" mode, all EBCDIC records
beginning with! will be listed on the LL device, with an
indication (I >1 preceding the command) that they are ig­
nored. This is the normal mode for closed-shop batch pro­
cessing, without halts between jobs after aborts.

The form of the command is

(!ATTEND

It exists for one job only, and usually immediately follows
the! JOB command.

c: The !C: control command connects the designated
real-time foreground task to a specified interrupt location,
optionally armed and enabled as specified by the control
code. The task may also be triggered by means of this con­
nect operation if the code is equal to seven, providing that
the task has previously been armed (i. e., with a previous
!C: command, an !XEQ or "!name" command, or by a
Q key-in).

The form of the! C: control command is

TCB [, code]

where

where TCB is the address of the Task Control Block for

oplb is as defined above.

F if present, indicates that both operational labels
are foreground; otherwise, both operational labels
must be background labels.

12 Monitor Control Commands

this task. If the value is hexadecimal, it must be
shown as +xxxx. If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so completely, using load information and values
on the TCB and BLOCK cards. No partial initiali­
zation of a TCB is allowed with the exception of

the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution location
plus the "temp" value specified on the Overlay
Loader ! $ROOT command.

code when present, is the interrupt operation code.
It overrides the initial TCB task code; a code of
7 triggers the task if it is armed.

Note: If "code" is not specified, the code given
in the TCB wi II be used.

The !C: command does not change the contents of the TCB.

CC The ! CC control command returns control to the cur-
rently assigned CC device and nullifies the effect of a
previous KP key-in. The control command is honored
regardless of whether or not the "skip" mode is in effect.
The "skip" mode is cleared following this command. The
form of the command is

DEFINE The !DEFINE control command allocates a
portion of the background temporary RAD space for a spe­
cific operational label or device unit number by assigning
the operational label to an unused device-file number,
which in turn is linked to the specified portion of the RAD.
Since temporary RAD files are not maintained by the Moni­
tor, they have no name and are identifiable only by the
operational label for whi ch each fi I~ was created. The
! DEFINE control command must precede the specific pro­
cessor or user program to which it applies, since this tem­
porary space is reset at the beginning of each job and at
the subsequent reloading of the JCP (unless a !TEMP S
control command is in effect). That is, the fi les are de­
stroyed and the RAD space and all device-file numbers
linked to it may be used by the next job.

The form of the !DEFINE control command is

! DEFINE oplb, nrec, srec [{, m
where

oplb is an operational label or a FORTRAN device
unit number (with a prefix of F:).

nrec is the number of logical records in the file.

srec is the logical record size, in bytes.

R defines the file as a random-access file.

u defines the file as an unblocked file.

C defines the file as a compressed EBCDIC file.

If neither R, U, nor C is specified, the file is defined as a
subsequential, noncompressed, blocked file. If R is input,
srec is used as the granule size.

EOD Blocks may be defined in a user's deck by inserting
! EOD control commands at the end of each block. When an
! EOD command is encountered, the Monitor returns an EOD
status (when using the M:READ I/O routine). This is similar
to a tape-mark on magneti c tape. Any number of ! EOD con­
trol commands may be used in a job wherever desired by
the user.

The form of the! EOD control command is

FIN The! FIN control command specifies the end of a
stack of jobs. When the! FIN control command is encoun­
tered, the Monitor writes it on the listing log to inform the
operator that all current jobs have been completed and also
writes! !BEGIN IDLEon the OC device. The Monitor then
enters the idle state.

The form of the! FIN control command is

FSKIP,FBACK,RSKIP,RBACK The file positioning con-
trol commands, ! FSKIP and! FBACK, forward or backspace
the specified device (magnetic tape or sequential RAD file)
immediately past the next file mark, or past the nth file
mark if n files are specified (n = 1 for RAD files). !RSKIP
and! RBACK perform similar functions but act on records
rather than fi I es. ! RBAC K does not apply to compressed
RAD files.

The forms of the control command are

{

! FSKIP }
!FBACK .
! RSKIP deVice [, number]

!RBACK

where

device is the device indicator of the device to be
positioned and is restri cted to background devi ces.
The device indicator is one of the following:

1. A device-file number, shown as a decimal
integer.

Monitor Control Commands 13

2. A FORTRAN devi ce unit number, shown as

F:n

where n is a decimal integer equal to the de­
vice unit number.

3. An operational label, shown as two alpha­
numeric bytes, the first of which isalphabetic.

number is the number of operations to be performed;
if absent, one operation is assumed.

HEX The! HEX control command loads patches at execu-
tion time for either the Monitor itself or any user program.
(See Appendix G for input description.)

The form of the ! HEX control command is

!HEX

JOB The! JOB control command signals the beginning
of a new job. The background operational labels and
FORTRAN device unit numbers are set to their standard
assignments as defined at System Generation. All RAD
temp files are closed.

This command always causes a page to be ejected on the
II device before the command is listed. The version of
the RBM being utilized will be inserted following the last
field on the! JOB command.

The form of the ! JOB control command is (! JOB [name, account]

where

name has a limit of 12 characters.

account has a limit of six characters.

JOBe The! JOBC control command indicates a con-
tinuati on of the current job. lJOBC closes all RAD temp
files and resets all background operational labels to their
standard assignments (with the exception of "CC"). The
lJOBC command does not clear the "attend" flag or the
"skip" mode, nor does it terminate the effect of an FG or
SY key-in. (A useful application of the! JOBC command
is given in the Utility job deck example in Chapter 10.)

14 Monitor Control Commands

The form of the ! JOBC control command is

LIMIT The ! LIMIT control command is used to set a
maximum on the execution time of a background program.
This command is effective only if the system has real-time
Clock 1 dedicated to the Monitor. If the job exceeds the
time limit, the job is aborted (Tl) and is terminated with a
postmortem dump (if that option was specified).

The form of the! LIMIT control command is

(LIMIT [N]

where N is the maximum allowable execution time in min­
utes (0 < N < 6000).

MESSAGE The !MESSAGE control command is used to
type a message to the operator. It is usefu I for messages
concerning mounting tapes or setting certain device or
Control Panel conditions. The command is listed on the
OC device. There is no response.

The form of the !MESSAGE control command is

(!MESSAGE message

where message is any comment to the operator, up to the
full-card image size (total of 72 columns per card).

PAUSE The! PAUSE control command temporarily sus-
pends background operation to allow the operator time to
complete the job setup. Background operations resume when
the operator performs an unsolicited S key-in. The command
is listed on the OC device.

The form of the! PAUSE control command is

(PAUSE message

where message is a comment to the operator, up to the full­
card image (total of 72 columns per card).

PMD The ! PMD (postmortem dump) command causes the
Monitor to dump the registers plus selected areas of mem­
ory if an error occurs during program execution. The dumps
are always onto the background DO device in hexadecimal
format.

The form of the ! PMD command is

! PMD [U] [, ALL] [, from, to] ... [from, to]

where

U if present, signifies an unconditional dump at
the end of the next job step even if there are
no errors.

ALL if present, signifies that all of the background
memory is to be dumped. If ALL is not present
and no limits are specified, only the general
registers are dumped.

from specifies the location (decimal or hexa-
decimal) at which dumping is to begin.

to specifies the last location to be dumped.

Up to four limit-pairs may be specified. The CPU registers
are printed in hexadecimal as the first line of the dump
regardless of the limits.

PURGE The! PURGE control command is used to output
the contents of the accounting file. The output is to back­
ground operational label LO in the following format:

MM/DD/YY HRMN NAME ACCOUNT TIME

(MMMM.MM)

An option is provided to clear the accounting file sub­
sequent to this output. In this manner the user could assign
background operational label LO to a device such as the
card punch or the paper tape punch, and by exercising the
"clear" option, could produce a periodi c hard copy of
the accounting fi Ie and clear the accounting fi Ie for
future use.

The form of the! PURGE control command is

(PURGE [C]

where C is the directive to clear the accounting fi Ie (must
be preceded by an unsolicited SY key-in).

REL Relocatable binary program modules to be loaded
onto the GO fi I e are preceded by an ! RE L control com­
mand. The binary modules that follow must be in Sigma 2/3

Standard Object Language. The modules may constitute
a complete program, a root, or segments of a program.

The form of the !REL control command is

The modules are copied onto the file to which GO is cur­
rentlyassigned. If GO has not been assigned, it will be
assigned by default to the RBMGO file on the RAD, which
is rewound before the modules are copied. Several modules
may be copied through the use of one! REL control command
by stacking the modules. The final module must be fol-
lowed by an ! EOD control command that wi II cause the
JCP to write an end-of-file (EOF) onto GO and then
backspace one file. In this manner the GO file is
positioned to accept additional input, but is always
terminated by an EOF. The relocatable binary decks are
loaded from operational label BI.

The ! REL control command is a convenient method of
obtaining additional hard copies of object modules pro­
duced on GO by Extended Symbol or FORTRAN. Byas­
signing BI to GO and then reassigning GO to BO, modules
will be copied from the original GO onto BO up to and
including the EOF. BI should be rewound before each
! REL command.

REWIND The !REWIND control command rewindsa mag-
neti c tape or a sequential RAD fi Ie and has no effect on
other devices. The operation takes place immediately
after the command is interpreted. The command is re­
stricted to background files.

The form of the! REWIND control command is

(REWIND device

where device is the device indicator (as in ! FSKIP) of the
devi ce to be rewound.

TEMP Normally, the temporary background space on
the RAD is reset at the completion of each step within a
job, so that a separate assembly and compilation can each
have full access to this temporary area for scratch space
as needed. The! TEMP control command is a means of
altering this standard procedure. When used with the
save (S) option, temporary files are not released after any
job step within a job stack until either a !TEMP command

Monitor Control Commands 15

is encountered with a reset (R) option or the next! JOB,
! JOBC, or ! FIN command is encountered.

The form of the ! TEMP control command is

!TEMP {~}

where either S or R is required

S means to save RAD temporary files between job
steps within a job (e. g., between an assembly
and a concordance).

R means to reset the RAD temp files after each job'
step.

UNLOAD The !UNLOAD control command causes a
specified magnetic tape or sequential RAD file to be re­
wound in manual mode. Operator intervention is required
to use the device again. If the device is a sequential RAD
file, the file is rewound to BOT and released by a call to
M:CLOSE. The command is restricted to background files.

The form of the !UNLOAD control command is

(UNLOAD device

where device is the device indicator (as in !FSKIP) of
the file to be rewound off-line.

WEOF The! WEOF command writes the appropriate end-
of-file mark on the output device. The command is
restricted to background files. For magnetic tape, it
is a tape mark; for the card punch or paper tape punch,
it is an ! EOD command; and for sequential RAD fi les,
it is a logical file mark.

The form of the !WEOF control command is

!WEOF device[,number]

where

device is the device indicator (as in !FSKIP)
of the device that is to have an end-of-file writ­
ten on it.

number is the number of end-of-files to be written.
If absent, one end-of-fi lei s wri tten.

16 Processor Control Commands

XEQ The! XEQ control command loads the first program
from whatever fi I e the OV operati onal label is currently
assigned to. For foreground programs, the command must
be preceded by an FG key-in.

The form of the! XEQ command is

XED The ! XED control command performs the same oper-
ations as the! XEQ control command except that! XED
transfers control to RBM Debug through the entry point
D:KEY when the root segment has been loaded. The mes­
sage! !DKEY-IN wi" appear on the keyboard/printer and
the user can then input Debug control commands. (See
Chapter 12 for a discussion of RBM Debug.) The! XED
control command causes the background operational label
ID to be default-assigned to the RBMID file on the RAD if
it is not already assigned.

The form of the! XED control command is

PROCESSOR CONTROL COMMANDS

System processors on the System Processor area and any user
background or foreground program residing in the User
Processor area can be cal led by a processor control com­
mand. The commands have the format

! processor parameters

where

processor is the fi I e name of a processor (see
Table 5).

parameters are optional parameters interrupted by
each parti cu lar processor.

When a processor control command is read and interpreted
by the Job Control Processor, the root segment of the speci­
fied subsystem is loaded from the RAD into memory. The
JCP will assign a" permanent RAD files used by the speci­
fi ed processor before the processor is executed un I ess these
files were previously assigned via !ASSIGN commands. The
JCP wi" also define all temporary operational labels used
by the processor (by defining them as background temp
files) unless they are previously defined via !DEFINE com­
mands. JCP then transfers control to the processor.

Table 5. RBM System Processors

Namet Descripti on

lFORTRAN

!CONCORDA

!OLOAD

!UTILITY

lXSYMBOL

lRADEDIT

Basic FORTRAN IV Compiler

Concordance Program for
Extended Assemb I er

Overl ay Loader

Utility

Extended Symbol Assembler

RAD Editor

tThe RBM System Processor names are entered into
the System Processor area dictionary with the RAD
Editor !#ADD command. If the file name is less
than eight characters, the name on the processor
control command must exactly match the fi Ie name.
If the file name is eight characters {maximum}, the
fi rst eight characters of the name on the processor
control command must exactly match the fi Ie name.
Trailing nonblank characters beyond the eighth
character in the processor control command name
are ignored.

Job Step

When a requested processor is read into the background
and attains control, this marks the beinning of job step.
An example of a job stack illustrating its breakdown by job
step is shown in Figure 2.

EXTENDED SYMBOL CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the
1 XSY MBO L control command and loads the Extended Sym­
bol assembler from the RAD into background memory. The
assembler continues to assemble programs until it encounters
an end-of-file. The Extended Symbol assembler is called
into operation with the command

1 XSYMBOL [option
1

, option
2

, ... ,option
n

]

where option can be

FORM

BA specifies batch assembly mode.

BO specifies binary output.

CR specifies cross-reference listing.

Monitor enters
"Idle" state.

... ___ JCP is read into
background

Uti I ity is read
~~~ _____ ~"'--L.... ....... ,,--.! .. _._-~----- into background. 

lJOB 

Figure 2. Job Stack Example 

JCP is read into 
.... --- background. 

Extended Symbol 
..... ______ is read into 

background. 

Proccessor Control Commands 17 



DW specifies display warnings. 

GO specifies output GO file. 

LO specifies list assembly output. 

NP specifies no standard procedure input. 

NS specifies no summaries. 

PP specifies punch standard procedure file. 

SL specifies simple literals. 

Any number of options may be specified and in any order. 
If no options are specified, the following options are 
assumed by defaul t: 

BO, GO, LO 

The presence of any nondefault option requires that any 
desired default options (except SI whi ch is always defaulted) 
must a I so be present. 

BASIC FORTRAN IV CONTROL COMMAND FORMAT 

The Job Control Processor reads and interprets the! FORTRAN 
control command and loads the Basic FORTRAN IV compiler 
from the RAD into background memory. The compiler is 
called into operation with the command 

(FORTRAN [5 1,52"", \] 

where S. can be 
I 

LO specifies an object listing. 

LL specifies an object listing with data chains. 

XP specifies extended precision real data instead 
of standard precision. 

ALL specifies that multiple files are compiled. 
FORTRAN will ignore single end-of-files and 
will terminate compilation only when two con­
secutive end-of-files are read. 

Binary output is normally output on both the BO and GO 
devi ces. To suppress the BO or GO output, the user must 
assign the pertinent device to 0 (see !ASSIGN and !DEFINE 
control commands in this chapter). 

If no specifications are present, binary output on the BO 
and GO devices, a source listing, and standard precision 
mode are assumed by default. 

18 RBM/Processor Interface 

RBM/PROCESSORINTERFACE 
Ground rules common to all system processors are: 

• All processors operate in the background. 

• With the exception of the UTILITY program, processors 
must use standard background operational label table 
assignments for their I/O requests. (See Table 2 for 
the standard background operational labels.) 

• The first character of each line of the listed output 
from the processors is always interpreted as a vertical 
format character (carriage control) and is never printed. 
The RBM I/O routines treat the verti cal format properly 
for the keyboard/printer, line printer, and magneti c 
tape. 

• When the RBM transfers control to a background pro­
cessor, the X register contains the address of the con­
trol card image, providing access to any parameters. 

• At the completion of an assembly or compilation, the 
processor writes two end-of-files on the LO device, 
and then backspaces the LO devi ce one fi I e. The 
M:CTRL routine will treat these operations for the 
devi ces as described in the I/O section. This permits 
file processing of output on magnetic tape, if LO is 
assigned to magnetic tape. The processor writes an 
EOF on 80 and GO at completion and then back­
spaces one file (GO and BO are separate options). 

• The processor generally returns control to RBM by 
means of a call to M:TERM. RBM will immediately 
read from CC and if there is another control command 
for the current processor, it wi II rei oad the processor 
from the RAD. 

• If overlay loading is required, the processor uses 
M:SEGLD. The overlay operational label for the 
background is PI. 

• If an unrecoverable error occurs, the processor exits 
to RBM with a cal I to M:ABORT and displays the abort 
code in the X register and the abort location in the 
A register. 

• Since all standard RAD files are defined by the Job 
Control Processor, the processors need not call 
M:DEFINE, but must call M:CLOSE to release blocking 
buffers in those cases where several RAD files are used 
but are not all open at one time. 

• The first ouput line to LO from an assembly or com­
pilation causes a page eject. 

GO AND OVFILES 

Figure 3 shows how the JCP and Extended Symbol or Basi c 
FORTRAN IV use the operational labels GO and OV. The 



Relocatable binary decks .. 8 copied directly from BI to :. 
GO by JCP with an! REL 

... 

control command. 

8·----- Assembler or compiler out-
put to both GO and BO. 

Overlay Loader takes cy r 

input from GO to form 
executable OV. 

JCP forms executable pro- Executable program; called 
gram directly from AI to 
OV with an ! ABS control by ! XEQ command; loaded 

command. by RBM subtask S:LOAD. 

Figure 3. Use of GO and OV Files 

GO and OV files are the files to which these operational 
labels are assigned by the JCP and are standard default 
files when no operational labels are specified. The GO 
file is a blocked, sequential file that contains relocat­
able binary decks read from the job stack, and binary 
ouput produced as a result of an assembly or compi la­
tion. After each module is loaded onto the file, an 
end-of-file mark is written and a backspace file is per-
formed. Thus, at any point within a job stack the 

GO file contains all modules that have been loaded and is 
in position to accept others. 

The Overlay Loader may now use the contents of the GO 
file to create an executable core image program and save 
this program on the random-access OV fi Ie. Absolute bin­
ary decks produced by an assembly may also be written {in 
executable core image form} onto the OV file by JCP 
through use of the ! ABS command. 

RBM/Processor Interface 19 



3. OPERATOR COMMUNICATION 

SYSTEM COMMUNICATION 

When events take place in the system that require operator 
intervention, or when one job is completed and another job 
begins, RBM informs the operator of these conditions by 
messages on the keyboard/printer. All such messages from 
the Monitor begin with two exclamation marks (!!). 

automatic to manual and back to automatic, depending on 
the initial condition.) When the change of state is sensed, 
the operation is retried. Thus, if the device is EMPTY, it 
need only be placed in the automatic mode. If there is a 
PUNCHES error or a FAULT on the card reader, the reader 
is unloaded, the bad card is corrected and replaced, and 
the reader is returned to the automatic mode. 

Generally, these messages require no operator response on 
the keyboard/printer but may indicate that some peripheral 
device needs attention. In some cases, the operator must 
interrupt and key in a response after correcting the speci­
fi ed problem. 

MONITOR MESSAGES 

The messages itemized in Table 6 are output on the OC de­
vice. They are primari Iy for background program use but 
can be used by foreground by specifying standard error re­
covery and lIinitiate and wait ll in the M:READ, M:WRITE, 
or M:CTRL calling sequence. I/O RECOVERY PROCEDURE 

If a message concerns an I/O error condition, the Monitor 
I/O routines that generated the message will be waiting to 
sense a change of state in the device. (A change of state 
is defined as a change from manual to automatic, or from 

Real-time programs with special requirements can inform 
the operator of special conditions and wait for an oper­
ator response. 

Message 

! ! ABORT CODE xx LOC yyyy 

! !AL 10 ERROR
t 

!! BEGIN WAIT 

Table 6. Monitor Messages 

Meaning 

The background job has aborted by reason of code xx (abort codes 
are defined in Appendix C). If this was a CC abort (control com­
mand error), a more explicit reason will be listed on the background 
DO device. (All abort messages and diagnostics are listed on the 
DO device.) If the system is operating in an "attend ll mode (see 
Chapter 2), RBM will perform any required postmortem dumps and 
then go into a waitstate after an abort. After a subsequent S key-in, 
RBM wi II recover and attempt to process the next control com­
mand on the CC device. If not operating in the lIattend ll mode, 
RBM will not go into a wait state but will perform any required post­
mortem dumps and immediately begin reading from the standard 
CC device, skipping all control commands or data cards until a 
!JOB or ! FIN card is found. All control commands are listed on 
the LL device, with an indication - a 1<1 preceding the command 
to show that they are being ignored. 

An irrecoverable I/O error has occurred whi Ie accessing the ac­
counting file, normally because of a hardware failure or unavaila­
bility of operational label AL. The correct assignment of this 
operational label is to RBMAL,SD. An attempt should be made to 
recover the contents of the accounting file as stated above. If 
this recovery fails, the operator may gain control through a KP 
key-in and then an FG key-in to allow foreground modifications; 
the foreground operational label AL may then be reassigned (e. g., 
!ASSIGN AL = RBMAL,SD,F or !ASSIGN AL = O,F). 

Note: Assignment of the foreground operational label AL to zero 
wi II inhibit the logging of job stack entries into the 
accounting file. 

tThis alarm occurs only if the RBM accounting option has been exercised at SYSGEN. 

20 Operator Communication 



Message 

I IAL OVERFLOW
t 

I I BEGIN WAIT 

I IATTEND ERRORxx 

I I BEGIN IDLE 

I I BEGIN WAIT 

I I BKG CKPT 

I I BK RE LEASE,dtnn 

I I BKG RESTART 

IICCI 

I I dtnn EMPTY 

I I dtnn ERROR [, TRK xxxxJ 

Table 6. Monitor Messages (cont.) 

Meaning 

The accounting file (RBMAL) cannot accept another entry. The 
accounting file is allocated at SYSGEN and accommodates 
74 entries. (The user may increase or decrease this capacity via 
the RAD Editor.) At this point, normal error recovery will be a 
key-in of KP to gain keyboard/printer control. Next, a key-in 
of SY wi II permit access to the accounting fi Ie. The operator 
should now assign the background operational label LO to a hard­
copy device (e. g., paper tape, card punch). Input of a I PURGE 
control command specifying the clear option 0. e., I PURGE C) 
causes the contents of the accounting file to be copied onto that 
device and clears the accounting file. The job stack causing the 
overflow can now be reentered. 

JCP has read an erroneous control command whi Ie operating in the 
ATTEND mode, in which case RBM goes into a WAIT state after 
typing this message. After a subsequent S key-in, RBM will process 
the next control command. 

JCP has just read a I FIN card (which completes a job stack) and 
background has gone into an idle state. Processing will resume on 
a new job stack following an unsolicited S key-in. 

The background has executed a WAIT request. An unsolicited 
S key-in will continue background processing. 

Background has been checkpointed as a result of a foreground pro­
gram request. 

The specified device has been released for background use. 

Background has been restarted from its point of interruption. 

JCP has begun to read control commands. This message occurs at 
the beginning of a job and between steps within a job (e. g. , 
when an assembly is completed). If CC is assigned to the keyboard/ 
printer (as a standard assignment, or after a KP key-in), the input 
light on the keyboard/printer will indicate that RBM is ready for 
input of a control command. 

The device specified is in the manual mode and may be out of 
paper, cards, or tape. 

There has been a parity or transmission error on the device. If any 
automatic retries were specified, they will have been performed 
before this message is output. A CR device wi II indicate that an 
error card is in the output stacker. Recovery procedure is described 
above under II I/O Recovery Procedure ll

• If it is RD, xxx x wi II be 
the errored track number. 

tThis alarm occurs only if the RBM accounting option has been exercised at SYSGEN. 

System Communication 21 



Table 6. Monitor Messages {cont.} 

Message Meaning 

! ! dtnn FAULT Some condition on device type dt with physical device number nn 
{hexadecimal} has caused this device to become nonoperational. 
The recovery procedure is described above (in the discussion under 
change of state). The operation is automatically retried when the 
device goes into the automatic mode; it is neither necessary nor 
possible for the operator to type in a response. 

! ! dtnn PUNCHES An invalid punch combination has been sensed on an EBCDIC 
image. 

! ! dtnn RATE ERR 

! ! dtnn UNRECOG 

! ! dtnn WRT PROT 

!! END IDLE 

! !FG PARITY ERR, TCB=FFFF, LOC=FFFF, 
A=FFFF, X=FFFF, B=FFFF 

! ! FG PARITY ERX, TCB=FFFF, LOC=FFFF, 
A=FFFF, X=FFFF, B=FFFF 

! !FG REQUEST,dtnn 

! ! FG RESERVE,dtnn 

22 System Communication 

A data rate overrun has occurred. If any automatic retries were 
specified, they will be performed after this message is output. 

Device type dt with device number nn (hexadecimal) is not recog­
nized by the I/O routines. If the device is a magnetic tape unit, 
the requested drive may not be dialed in properly or power may be 
off in either the unit or the controller. 

Either the RAD is physically write-protected or a RAD file is logi­
cally write-protected. If a RAD file is logically write-protected, 
an unsolicited key-in of SY wi II allow RBM to continue. If the 
background is attempting an invalid operation, it should be 
aborted. 

RBM has gone out of the idle state and will begin reading control 
commands from the CC device. Control commands wi II be ignored 
until a !JOB command is input. 

A foreground parity has occurred but the specified allowable limit 
of foreground parity errors has not been reached. 

A foreground parity error has occurred. The specified allowable 
I imit of foreground parity error has been reached. ERX indicates 
that the task has been dicabled and terminated. 

A request has been made to reserve the specified device. The 
operator should prepare the device and then reserve it through use 
of the FR key-in. 

The specified device has been reserved for foreground use. 



Table 6. Monitor Messages {cont.} 

Message Meaning 

! ! KEY ERROR,comments The Monitor could not process an unsolicited key-in response. The 
message usually indicates a format error on the key-in, where 
comments may be one of the fo II owi ng: 

! ! MACH. FAULT: TCB=FFFF, LOC=FFFF, 
X=FFFF, B=FFFF 

1 1 MACH. FAULX: TCB=FFFF, LOC=FFFF, 
A=FFFF, X=FFFF, B=FFFF 

!! MESSAGE comments 

1 ! PAUSE comments 

1 lPOWER ON 

AREA 

DEVICE 

FIXED 

OVFLOW 

DFN/OP 

10 ERR 

TEMP STACK 

The wrong disk pack was mounted for an 
'M' key-in. 

The channel for the device specified was not 
defined at SYSGEN or this device is not 
defined. Applies to 'M' and 'BT' key-ins. 

Performing the requested mount would entail 
undefining more than one other area. 

The Master Dictionary, Alternate Track 
Pool, or IOCS table length will not allow 
this key-in to be processed. 

The Device File table or Operational Label 
table has overflowed. 

The device specified in the 'M' key-in cannot 
be correctly accessed. 

The Temp Stack has overflowed. 

Direct I/O to an unrecognized device has been attempted twice 
and a watchdog timeout has occurred. 

Direct I/O to an unrecognized device has been attempted twice at 
the same location. The foreground task subsequently is disabled 
and terminated. 

A ! MESSAGE control command has been read. The comments field 
may contain tape mounting or other instructions. RBM continues 
to read from the CC device after the message is typed out. 

A ! PAUSE control card has been read. The comments field may 
contain tape mounting information or other instructions. A control 
panel interrupt followed by an S key-in will cause RBM to continue 
reading from the job stack. 

The system has experienced a power failure, and the power fail­
safe option has been implemented. This message is written at the 
RBM interrupt level, and consequently, any foreground tasks will 
have been completed before this messsage is typed. At this point 
the operator should terminate background, and when foreground 
is completely idle, he should reboot RBM from the RAD and 
restart the background. The message is output as soon as RBM has 
control. 

System Communication 23 



OPERATOR CONTROL 

UNSOLICITED KEY-INS 

Because of the possible delays associated with messages to 
and from the operator, no devices used for time-critical 
operations should time-share an I/O channel used for oper­
ator communication. (Normally, operator communication 
is on a keyboard/printer.) All background references to the 
operator output device should be to operational label OC. 
A frequent method of operator control is in response to a 
specific request from a foreground or background program. 
In this case, there is no standard format. 

The operator may also desire to exercise control over the 
background programs on an unsolicited basis. This control, 
termed an unsolicited key-in, is initiated by the operator 
activating the INTERRUPT switch on the Sigma 2/3 Pro­
cessor Control Panels. This action causes an interrupt 
into the Control Panel Task. The task sets a flag in the 
RBM Control Task status word, and then issues a Write 
Direct to trigger the RBM Control Task. The Contr01 Panel 
Task then exits. 

When the RBM Control Task becomes the highest priority 
task in the system (that is, when all rea I-time foreground 
tasks are nonactive), it issues an output message 

!! KEY-IN 

and requests input (up to 20 characters) from the operator. 
Each key-in must be terminated with the NEW LINE e 
code. The backspace (¢) and delete (EOM) codes may 
be used before the NEW LINE is typed to correct a mis­
typed key-in. The analysis and subsequent action from the 
unsolicited key-in is performed at the RBM Control Task 
priority level. 

Specific key-in responses under RBM are: 

BL oplb = OFN GP] Permits change of operational label 
assignments during running of background programs. 

where 

oplb is an assigned operational label. 

DFN is a decimal number (OO through 53). 

P is an optional permanent change unti I system 
reboot. 

BL oplb = oplb Gp] Alternate version of BL oplb= DFNGP] 

BR[d~nn Release the specified device for background 
use. The characters representing the device type are 
optional but, if input, will be used to validate the request. 

BT dn, track Add track number "track" to the Alternate 
Track Pool for device dn. If the Alternate Track Pool is 

24 Operator Control 

not large enough or if dn is not a RAD device, an error 
message will be written. 

C:TCBGcode] Connect the specified real-time fore-
ground task to the dedicated interrupt location. 

where 

TCB is the address of the task control block for this 
task. (If the value is hexadecimal, it must be 
shown as +xxxx.) If the Overlay Loader initializes 
the TCB by means of the TCB parameters, it does 
so completely, using load information and values 
on the TCB and BLOCK cards. No partial initiali­
zation of a TCB is allowed with the exception of 
the blocking buffer pool. If a user builds his own 
TeB, the TCB must begin at the execution loca­
tion plus the "temp" value specified on the 
Loader! $ROOT command. 

code if present, overrides the initial code in the 
TeB for the task; a code of 7 would cause the 
level to be triggered. If code is not present, it 
will be derived from the task control block. 

CC Remove the keyboard/printer override of the ec 
device. The next control command will be read from the 
background operational label CC. This operator key-in is 
identical to the ce control command. 

CP Clear card punch and simulate an unusual end con-
dition in the punch. The key-in is required if the card punch 
fai Is to recover after a JAM A or JAM B. Operator should 
first manually clear the punch and restore it to READY, then 
interrupt and key in CPo The last (faulty) card will be re­
punched and cards in the normal stacker wi II be in the 
correct sequence. 

DBt XXXX,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of background 
memory on background device DO. This key-in can be in­
put at any time for debugging purposes. The dump will be 
in hexadecimal. 

DE Causes Debug (if Debug is part of the system) to 
request the input from the keyboard/printer. 

OFt xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, dump all of foreground on background 
device DO. The dump will be in hexadecimal. 

t 
OM xxxx,yyyy Dump locations xxxx to yyyy if re-

quested; otherwise, immediately dump all of RBM on back­
ground device DO. The dump will be in hexadecimal. 

D[T]MM/DD ~YY][,HRMN] 
within RBM. 

Reset the ca lendar date 

tSYSGEN options (response to INC MISe query). 



D[T]MM,DD[, VVJ[,HR,MN] Alternate version of 
D [TJ MM/DDL/yyJLHRMNJ 

DR dnt xxxx,yyyy Perform a selective dump of the RAD 
device dn to background device DO, where xxxx and yyyy 
are the first and last sectors of the block of sectors to be 
dumped. If dn is omitted, the RAD containing the SP area 
will be dumped. If dn refers to an undefined or non-RAD 
device, an error message will be written. If a'consecutive 
series of sectors are all zeros, they will be skipped unless 
the last sector of this zero series is yyyy, in which case it 
wi II be dumped. For example, if II DR 100,200" is keyed 
in, and sectors X' 1BO' through 'X '215 1 contain zeros, X' l00 ' 
through X'1CF' and sector X'200 ' will be dumped. This 
key-in applies only to the 7202 and 7204 RADs. 

The RAD dump routine performs RAD input with interrupts 
inhibited, and therefore should not be used when response 
time is critical. 

F Dump the contents of the File Control Table number 
(set in the DATA switches) on the operator's console. DAT A 
switch value is DFN in hex and must be a SYSGEN number. 

FG [,S] Must precede any job stack operation affecting 
the foreground or the operation will be aborted. This 
key-in is effective until the next !FIN or !JOB command 
is encountered. Since the key-in is normally input in 
response to a ! PAUSE command, the optional,S key-in will 
clear the idle state. 

FL oplb = DFN~P] Permits foreground operational label 
assignment changes during system operation. The changes 
will be reset to SYSGEN values upon system reboot. 

where 

oplb is assigned operational label. 

DFN is a decimal number (00 through 53). 

P is an optional permanent change unti I system 
reboot. 

FL oplb = oplb~P] Alternate version of FL oplb = DFN['P] 

FR[d!]nn Reserve the specified device for foreground 
use. The characters representing the device type are op­
tional but, if input, will be used to validate the request. 
The device type will be required to distinguish PT40 from 
KP40, etc. 

Ht Input hexadecimal corrector cards from background 
device CC. (See Appendix G for the format of the corrector 

tSYSGEN options (response to INC MISC query). 

cards.) To patch program segments, DATA switch 0 must be 
placed in the "1" state. This causes RBM to type! ! BEGIN 
SEG xx, where xx is the segment number (xx equals zero 
for the root), and go into an idle state after each segment 
is loaded. Correctors can then be loaded to the segment 
following an H key-in. An S key-in will cause RBM to 
resume operation. Correctors modifying foreground must be 
preceded by an FG key-in. 

KP Begin reading control commands from the keyboard/ 
pri nter. The key-in goes into effect after the next! ! eel 
message and stays in effect unti I a CC key-i n or ! CC con­
trol command is encountered. 

Lar,dnGwp] Area mnemonic "ar", with a write protect 
code of ilWpll, will be written on sector 1 of device dn and 
sector 2 will be written with zeros. IIWp" must be one of the 
following: 

blank, D,or N no write protect 

B background write only 

F foreground write only 

R RBM write only 

The L (Label) key-in is an implicit 'M' key-in. Error con­
ditions and causes are described under the !! KEY ERROR 
message in Table 6. 

M ar,dn Mount area "ar" on device "dn". The operator 
must mount the disk pack containing area "ar" on device 
"dn" before making this key-in. Unless "ar" is "Xn" the 
disk pack will be read to determine if it actually is area 
II ar". If this is true, area II arll wi \I be added to the Master 
Dictionary and made available for general use, including 
use by the RAD Editor and M:ASSIGN. Error conditions 
are described in !! KEY ERROR message in Table 6. If 
an error occurs, area "ar" will be undefined and any areas 
implicitly "dismounted" wi II be undefined. 

Q name Queue specified program for subsequent exe­
cution in nonresident foreground. As soon as this space is 
free, the requested program is loaded. If the queue stack 
is full or if the specified program is not found in the direc­
tory, an error message is output on the assigned foreground 
oplb, DO. 

S Continue processing if Monitor is in an idle or wait 
state. If there is a waiting background program, continue 
processing that program. If there is no background program, 
begin reading control cards from the CC device. (Monitor 
can get into the wait state from a W key-in or ! PAUSE com­
mand or into idle from a ! FIN command.) 

Operator Control 25 



SY[,S] Permit modification of system fi les on the RAD 
to take place until the next !JOB or ! FIN command is en­
countered. This key-i n is a double check (similar to the 
FG key-in) to prevent accidental destruction of the RAD 
files. Since this key-in is normally input in response to a 
! PAUSE command, the optional,S wi II clear the idle state. 

T HRMN Reset the RBM system time. 

I T HR,MN Alternate version of T HRMN. 

UL Force an unload of the program occupying the non-
resident foreground area. Note that operator key-ins can 
interrupt the background program at any time. Operator 

26 Operator Control 

intervention cannot take place while there are active fore­
ground programs, and will be delayed until they terminate. 

W Background goes into a wait state. 

X Abort the background job with any dumps requested, 
and output error code OP and a printed message showi ng 
the location of last background instruction executed. If 
the Postmortem Dump program is active, it will also be 
terminated. 

Z Terminate the current background job including the 
Postmortem Dump program without performing postmortem 
dumps (abort code ER is output). 



4. MONITOR SERVICE ROUTINES 

BRANCHING TO SERVICE ROUTINES 

Under RBM, foreground and background programs may make 
calls on the Monitor to perform various services or privi­
leged operations. (See Table 7.) For background requests, 
a branch to protected memory will trigger the protection 
routine which examines the branch for validity. If the 
protection violation is one of a permissible set of "con-
trolled" violations, the branch is permitted; otherwise, the 
background job is aborted with a suitable error message 
giving the location to which the branch was attempted. If 
the branch is valid, the protection routine will permit the 
branch to the appropriate Monitor service routine. 

All service routines are completely reentrant. Hence, they 
can be used by multiple tasks on a completely independent 
basis. Table 7 shows the routines requiring temporary space 
in the user's temp stack. 

There are two different methods of executing a branch to 
one of these Monitor service routines: the conventional 
method is to declare the service routine name as an ex­
ternal reference and have the Overlay Loader satisfy the 
reference at load time. {In this case, the address lit­
eral will be in the user's program, and will be filled in 
by the Overlay Loader.} The other method is to branch 
indirectly through the address literal in the zero table 
(see Appendix B) using the absolute address given in 
Table 7. This is a useful technique for an absolute fore­
ground program assembly, or for a processor or other pro­
grams that are self-relocating. 

The B register is always saved and restored since it is used 
to point to temporary space. All other registers are volatile. 
The return address (specified by the L, T, or A register) 
must point to the background area if the routine is called 
(branched to) from the background. Otherwise, a protec­
tion violation abort occurs. 

Certain Monitor service routines are nonresident overlay 
routines. The Monitor subroutine Q:ROC controls the load­
ing of the RBM overlay area. The following Monitor service 
routines are nonresident overlay routines: 

M:ASSIGN M:DOW 

M:CLOSE M:LOAD 

M:COC M:OPEN 

M:CTRL M:RSVP 

M:DATIME M:WAIT 

M:DEFINE 

Actually, portions of the above routines are resident. The 
resident portion of M:CLOSE, for example, is as follows: 

M:CLOSE RCPYI P,T 

B Q:ROC 

DATA 'ID NN' 

where 

ID represents the segment identifier of the non-
resident overlay section of M:CLOSE. 

NN is the temp stack requirement. 

Q:ROC will call M:RES to reserve the appropriate amount 
of temp space, wi II read in the requi red segment, and wi II 
transfer control to the overlay routine which runs and re­
turns to Q :ROC. Q:ROC wi II reload the overlay area if 
appropriatet and will then release the temp space and re­
turn to the caller by a call to the Monitor service routine 
M:POP. Any calls to the above Monitor service routines 
wi II require use of the RAD; therefore, the requesting task 
must provide in its TCB for use of the RAD. In addition, 
particular attention should be given to the maximum tempo­
rary stack requirements of these routi nes. 

SERVICE ROUTINES 

M:IOEX (General I/O Driver) 

M:IOEX provides direct control by background programs, 
the Monitor, or foreground real-time programs over all 
I/O operations on the buffered I/O channels for centraliza­
tion of I/O interrupts. All M:IOEX control functions are 
exempt from channel time limits. The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:IOEX 

ADRLST is a pointer to the argument list, which is a set 
of two, three, or four consecutive words in the user's 

tIf the overlay area was originally occupied by an active 
Monitor service routine, the routine must be reloaded. If 
the requested routine is the one occupying the overlay area, 
no loading will be required. 

Monitor Service Routines 27 



Table 7. Transfer Vector for Monitor Services 

Address Words of Temp Required 

Dec. Hex. ADRL for Purpose of This Routine Min. Max. 

199 C7 M:FSAVE M:SAVE Function if Register Previously Saved 0 0 

200 C8 M:IOEX Device-Dependent I/O Driver 16 16 

201 C9 M:READ Device-Independent Read Routine 25 38 

202 CA M:WRITE Device-Independent Write Routine 25 38 

203 CB M:CTRLt Device-Independent Control Routine 16 43 

204 CC M:DATIMEt Calendar Date and Time of Day 18 18 

205 CD M:TERM Norma I Term i nati on of Background 0 0 

206 CE M:ABORT Abnormal Termination of Background 0 0 

207 CF M:SAVE Save Registers on Real-Time Interrupt 0 0 

208 DO M:EXIT Restore Registers on Foreground Exit 0 0 

209 D1 M:HEXIN Hexadecimal to Integer Conversion 0 0 

210 D2 M:INHEX Integer to Hexadecimal Conversion 0 0 

211 D3 M:CKREST Checkpoint/Restart Background 0 52 

212 D4 M:LOADt Load Nonresident Foreground 13 13 

213 D5 M:OPENt Open Blocking Buffer for RAD File 13 13 

214 D6 M:CLOSE
t 

Close Blocking Buffer for RAD File 14 14 

215 D7 M:DKEYS Read Data Keys 0 0 

216 D8 M:WAITt Execute Wait Loop From Background 15 51 

217 D9 M:SEGLD Load Overlay Segment 35 63 

218 DA M:DEFINEt Define RAD Files in Background Temp Area 13 13 

219 DB M:ASSIGNt Assign Operational Labels 18 56 

220 DC M:POP Release Dynamic Temp Space 0 0 

221 DD M:RES Reserve Dynamic Temp Space 0 0 

222 DE M:OPFILE Convert Operational Label to Device-File Number 0 0 

223 DF M:RSVpt Reserve or Release Peripherals 20 51 

224 EO M:DOWt Diagnostic Output Routine 13 51 

225 E1 M:COCt Communications Handler 25 25 

tThese routines are nonresident R'BM overlays. All nonresident RBM overlays require a minimum of 13 temp cells to load 
the routine. 

Notes: 1. 

2. 

3. 

4. 

5. 

To branch to one of these routines, branch indirectly through the specified address above after RCPYI P,L 
(except M:RES which is called following an RCPYI P,T). 

The minimum temp space required is the number used by the routine itself. The maximum temp space is the 
number required by this routine and those it calls. For example, M:READ (25) may call M:OPEN (13) to 
open a blocking buffer. This call would require 38 temp cells. 

Under normal usage, M:SEGLD requires a maximum of 35 temp cells. However, 61 are required to output 
the message!! BEGIN SEG xx. This is an RBM assembly option 0. e., Debug = yes). 

M:CKREST requires 52 temp cells if the checkpoint is performed at the priority level of the calling task. 

Use of any device that has nonresident pre-I/O and post-I/O edit routines and nonresident error recovery rou­
tines associated with it requires 38 temp cells by M:READ/M:WRITE. These include KP, PT, LP, B7, CR, and CPo 

28 Service Routines 



program or in a temporary stack. This argument list ap­
pears as follows: 

word 0 

o OP 

o 2 3 12 13 15 

where 

F=O if word 1 is an operational label or device 
unit number. 

A = 1 if AIO Receiver is specified in word 3 (fore-
ground option only). 

A = 0 if no AIO Receiver is specified (three-word 
call, then). 

Z = 1 if AIO Receiver is acknowledged on zero 
byte count interrupt. 

Z = 0 if acknowledged on channel end only. 

OP is the code for the operation to be performed: 

o for SIO 

1 for no 
2 for TDV 

3 for HIO 

4 for IIcheck previous data transfer ll 

word 1 

Operational I abel or fi Ie number 

o 15 

word 2 

Address of first 10eD (for SIO onJy) 

o 15 

word 3 

Address of AIO Receiver (for SIO onl y) 

o 15 

Return is to the location in the L register on the call 
to M:IOEX. B register is always saved. 

The Overflow (01) and Carry (CI) Indicators, the A register, 
E register, and (in some cases) X register are used to return 
status information on the required operation. The complete 
list of status codes is given in Table 8. In this table, DSB 
stands for Device Status Byte, OSB for Operational Status 

Byte, Byte Count Residue is from the even I/O channel 
register at channel end, and Dev. No. stands for the device 
number of the current device. 

Note that no I/O error recovery has been attempted. DSBs 
and OSBs are just as received from the I/O system hardware. 
These status returns are organized so that a quick and simple 
test wi II show the nature of the return. If the user wishes 
to keep trying to initiate the I/O operation or keep check­
ing for completion, it is possible to loop back to the call 
to M:IOEX. 

The user can use M:IOEX to read/write on the RAD or 
any peri pheral device that uses standard Xerox Sigma pe­
ripheral responses. For input/output operations to the 
RAD, the user must first give a seek order and then the 
appropriate data-transfer request. The user must also 
perform his own fi Ie management. If multiple tasks use 
the RAD, they must cooperate in some way so that the seek 
address is not modified.by some higher-level task before the 
data operation is initiated. Note that a user must always 
issue a "Check/Write ll (op code of 4) after each read or 
write request. 

The following rules govern the use of M:IOEX for a RAD: 

1. A device-fi Ie name of the form XXdn must be included 
in the set of SYSGEN input parameters following the 
heading DEVICE FILE INFO, where XX indicates that 
this is a special-purpose device for use with M:IOEX, 
and dn is the hardware device number of the RAD. The 
M:IOEX calling sequence must contain the device-file 
number corresponding to this device-fi Ie name, or must 
contain an operational label that is assigned to the 
device-fi Ie number. 

2. The set of SYSGEN input parameters following the 
heading RAD ALLOCA nON must include provisions 
for reserved tracks that are not to be included in the 
areas allocated for RBM file management. This can be 
accomplished by 

a. Assigning the system RAD to a device number other 
than XXdn. This method requires two RADs, one 
containing the RBM area assignments, and the other 
avai lable for use with M:IOEX. 

b. Allocating only part of a RAD for RBM area assi gn­
ments, leaving the remainder available for use 
with M:IOEX. 

c. Allocating part of a RAD for M:IOEX use by speci­
fying that a number of tracks be skipped between 
RBM areas with an allocation parameter of SK = n, 
where n is the number of tracks. 

d. Any meaningful combination of the above. 

Service Routines 29 



Table 8. Return Status from M:IOEX 

E Register A Register X Register 
Operation Ma jor Status 01 CI 

0 1 - 7 8 -15 0-7 8 -15 o - 15 

SIO, no, Device number 
1 1 0 Recognition Code 0 TDV, HIO not recognized --

Invalid call or oplb 0 0 1 -- 4 or 8 0 
All 

oplb equals zero 0 0 0 -- 2 0 

SIO cannot be 
0 1 0 

Current fj Ie no 
Dev. No. 0 

accepted t Number 

SIO Channe I busy t 0 0 0 
Active fj Ie 

DSB Dev. No. -1 Number 

Successful 
0 0 0 

Current file SIO 
Dev. No. 0 initiation Number DSB 

SIO cannot be 
0 1 0 

no accepted Current fi Ie no 
Dev. No. 

Number DSB --
Other 0 0 0 

Dev i ce abnorma I 
0 1 0 

condition 
Current file TDV TDV 
Number DSB 

Dev. No. --
Device normal 

0 0 0 
condition 

Device operating 
when HIO 0 1 0 
received 

Current file HIO HIO 
Number DSB 

Dev. No. --
Device not oper-
ating when HIO 0 0 0 
received 

I/O operation 
1 0 0 

Current fi Ie SIO 
Dev. No. --in progress Number DSB 

I/O check 
I/O completed 

0 1 0 
unusual end E 

Flag OSB 
AIO 

Dev. No. 
Byte Count 

DSB Residue 
I/O completed 

0 0 0 
(Bit 7) 

normal end 

tUse BXNC to test both conditions simultaneously. 

30 Servi ce Routi nes 



M:IOEX FUNCTIONS 

TIO, TDV, HIO In these operations, the request is per-
formed immediately and the device status bytes are returned 
if the device is recognized. The AIO Receiver is ineffec­
tive for these operations. 

SIO The SIO operation is initiated if there is device 
recognition and the channel is free (which may not be the 
same as II device free" or "device controller free" for chan­
nels with several devices). 

The SIO is issued even if the device is in the manual mode. 
It is therefore the responsibility of the user's program to test 
for the manual mode both before and after the SIO request, 
and to inform the operator by a suitable message. 

An HIO can be used to abort an I/O operation. This results 
in setting the channel end device ready for a new activity. 
Since status is returned, an I/O check operation is not 
returned. 

Protection checks are performed only for background I/O 
requests. Background is not permitted an AIO Receiver, 
and a receiver is ignored if requested from the background. 
Background operations specifying data chaining are not 
allocated. This is due to the structure of the lOCOs, I/O 
Data Tables, and the requirements for the absolute protec­
tion of foreground programs (see II End Action" in Chapter 5). 

If the request for I/O action is for an odd number of bytes, 
the order byte must be properly set in the right half of the 
word, as specified in the Sigma 2 and Sigma 3 Computer 
Reference Manuals. M:IOEX does not move any data or 
order bytes. 

When using foreground data chaining, it is very important 
to set the interrupt flags on all lOCOs except for the one 
pointing to the "order" byte, since an unusual end condi­
tion in one of the lOCOs without the interrupt flag being 
set will cause the I/O to terminate without an interrupt, 
and the channel may then "hang Up" waiting for the in­
terrupt because the RBM tables indicate that the channel 
is still busy. 

The Monitor does not alter the user's data in any way. If 
an I/O interrupt is received and there is no AIO Receiver 
specified (and the device is still busy), the I/O interrupt 
is ignored and the channel remains active. 

The user's program must determine whether there was a 
channel end or an unusual end condition. If the return is 
for a busy device or channel, the program can loop on this 
request until the operation is successful. 

Since only higher priority tasks can take control from the 
task issuing the request, the routine issuing the request 
gains control of the desired device and/or channel as soon 
as the current operation is complete. The M:IOEX routine 
inhibits interrupts for a period of less than 100 microseconds 
duri ng the loading of the I/O channel registers and the set­
ting of the activity status for the device and channel. Thus 

a higher priority task can always interrupt up to the point 
when the I/O channels are loaded during the initiation of 
an I/O request. 

I/O CHECK This operation tests for channel end on the 
previously requested I/O operation by testing certain flags 
within the RBM I/O tables. The flag is set by the I/O in­
terrupt task when the device interrupt occurs. Thus, no 
TIOs are required to determine when the operation is com­
plete. Since the TIOs do consume some I/O time (particu­
larly if executed repeatedly in a test loop), the method of 
checking for I/O completion described herein is desirable. 
The Monitor saves the operational status byte and the byte 
count residue from the completion of the I/O operation, 
even though another device may have used the channel be­
fore the end-action check is made by the requesting task. 

The following restrictions are pertinent in using M:IOEX: 

1. RBM wi 1\ not necessari Iy recover automatically from 
the results of an HIO for most devices. Operator in­
tervention may be necessary. 

2. Background programs cannot spec i fy data c ha i ni ng. 

3. Background programs must specify an interrupt. 

M:READ (General Read Routine) 

M:READ provides device-independent input with standard 
editing and checking. Standard error detection and cor­
rection is optional on each call. The call ing sequence is 

LOX 

RCPYI 

B 

ADRLST 

P,L 

M:READ 

ADRLST is a pointer to the argument list, a set of two to 
six words in the user's program or in a temporary stack. 
This argument list appears as: 

word 0 

o ORDER 

o 2 3 4 5 7 8 15 

where 

F = 1 if a device-file number is specified. 

F = 0 if an operational label or device unit number 
is specified. 

A = 1 if an Ala Receiver address is specified 
(specifiable by foreground only). 

A = 0 if no AIO Receiver is specified. 

Service Routines 31 



W = 1 if wait for completion is unconditional. 

W = 0 if wait is for II initiate and return" only; 
return is immediate if operation cannot be started 
at once. (The minimum-seek algorithm does not 
apply to RAD II no wait" operations.) 

E = 1 if standard error recovery is to be performed 
at channel end. t 

E = 0 if no error recovery is to be attempted. t 

R = 1 if a RAD granule displacement is specified 
(can only be specified for random-access RAD 
files). 

R = 0 if a R.A.D granule displacement is not 
specified. 

ORDER is one of the following permissible pseudo 
input orders: 

Order Operation 

X'OO' Return information about this device 
and file. 

X'02' Read binary. 

X'06' 

X'OC' 

Check previous input for completion 
(after a II no wait" initiation). 

Read automatic. 

Read backward (9-track magnetic 
tape only). 

word 1 

Operational label or file number 

o 15 

word 2 

Address of buffer to receive data 

o 15 

Buffer must be in background if called by a background 
program. Also, buffer must not overlap active temporary 
storage or unavailable memory. 

t 
For magnetic tapes, RAD, or disk pack, five attempts 

for error recovery will be made if E is specified. If I/O 
without a WAIT is specified, error recovery will not be 
performed until a "Check/Write" is issued by the user. 

32 Service Routines 

word 3 

Number of bytes to transmit 

o 15 

Byte count must be an even number when reading from RAD 
files and cannot exceed 65,536. For all other devices the 
byte count may be either even or odd but cannot exceed 
8192. If the byte count is even, input data stored in the 
user's buffer starts in the I eft-hand byte; if odd, data starts 
in the right-hand byte. 

word 4 

Ala Receiver address or RAD granule displacement 

o 15 

If A = 1 (in word 0), this is the address of the closed AIO 
Receiver subroutine called by the I/O interrupt task at 
channel end. If A = 0, this is the RAD granule displacement 
(see word 5). 

word 5 

RAD granule displacement (optional) 

o 15 

If an AIO address is specified (A = 1 in word 0), word 5 
indicates the displacement of the granule from the start of 
the fi Ie (starting with a displacement of zero) where the 
I/O transfer begins. Word 4 is the RAD granule displace­
ment if A = O. 

Return is always to the location specified in the L register. 
The B register is always saved. 

The E, A, and X registers all contain status information on 
the return, as shown in Table 9. I/O completion codes 
are listed in Table 10. Return is always immediate if there 
is a calling sequence error, in which case the E register is 
negative upon return. For the case where a wait is speci­
fied, the I/O is initiated and the M:READ routine loops 
until the operation is complete. When II initiate and no­
wait" is specified, an 510 is issued before the return if the 
device is recognized, is currently free, can accept an 510, 
and is not in the II manual II mode (unless M = 1 in word 0). 
If anyone of these conditions is false, the M:READ routine 
returns immediately with the appropriate indicators set. If 
the channel or device is busy, the caller can either loop 
back to the call to M:READ or switch to another device. 
The "wait" flag has meaning whether this is an initiate or 
a check order. Error recovery is attempted if specified 
before the final return is made. 

On a check operation, the byte count returned in the X 
register may not be meaningful if the calling sequence does 
not specify the same count as the initial read. If the order 



Table 9. Return Status from M:READ, M:WRITE, M:CTRL 

Operation Ma jor Status Action E Reg. A Reg. X Reg. 

All operati ons Operat i ona I I abe I s not Return immediately -1 8 t 
valid 

C a II i ng seq ue nee error Return immediately -1 4 t 

Operational label is set Return immediately 0 2 t 
to zero 

Unrecoverable I/O error Return after error recovery -1 1 t 
attempt, if any 

Illegal sequence of RAD Return immediately 0 9 t 
operations 

Blocking buffer not Return immediately 0 10 t 
available 

Initiate I/O Channel and device are Initiate I/O and return. 0 0 o or -1 
and no wait free and in automatic Status in X register only 

meaningful if A=l in the 
call. X = - 1 if th e AIO 
Rece iver wi II not be ac-
knowledged; otherwise, 
X=O. 

Channel and/or device Return immediately 0 -1 t 
are busy 

Manual intervention is Return immediately -1 -1 t 
required (manual mode 
or no device recognized) 

Check and I/O still in progress Return immediately 0 -1 t 
no wait 

I/O complete Return after end- o or -1 comple- Byte 
action, if any tion code count 

Initiate and Channel and device are Initiate I/O and wait 
wait free and automatic for completion 

Channel or device Wait and keep trying 
are busy 

Device number is not Type out the proper 
recognized or is write- message to operator 
protected and retry 

Device is in manual Type out EMPTY mes-
mode sage to operator and 

retry 

Initiate and I/O sti II in progress Wait, and keep 
wait or check checking 
and wait 

I/O complete Perform any end- o or -1 comple- Byte 
action and return tion code count 

trans-
mitted 

tUnspecified 

Servi ce Routi nes 33 



Table 10. I/O Completion Codes 

E Reg. A Reg. Meaning 

0 0 Operation successful. 

-1 1 Unrecoverable I/O. 

0 2 Operation not meaningful for 
this device. 

0 3 End-of-fi Ie encountered. 

0 4 End-of-tape encountered. 

0 5 Incorrect record length. 

0 6 No I/O pending for this check 
operation. 

0 7 Device is write-protected. 

0 8 Beginning-of-tape encountered. 

0 9 Illegal sequence of RAD 
operati ons. 

0 10 Blocking buffer unavailable. 

code is X'OO', the following device status information is 
returned: 

Register Status Information 

A Device name (EBCDIC). 

E TDY device status byte (bits 0-7) and physi­
cal device number (bits 8-15). 

X Physical standard record size (bytes) for non­
RAD files or granule size for RAD files. 

M:READ FUNCTIONS 

M:READ is designed to read one physical record from the 
specified device regardless of device type and whether the 

34 Service Routines 

Comment 

X register contains the number of data bytes 
transmi tted. 

If error recovery was specified, the maximum number 
of retries have been unsuccessfully attempted. 

Either an operational label was assigned to file zero 
or I/O operation is not meaningful for the device. 

Significant only for magnetic tape and sequential RAD 
fi les (except in automatic mode when significant also 
for cards, paper tape, and keyboard/printer). 

Significant only for magnetic tape or sequential and 
random-access RAD fi les. 

For read operati ons, the requested byte count does not 
equal the device's physical or logical record size. For 
write operations, the requested byte count is greater 
than the device's physical or logical record size. For 
either read or write, the actual byte count transmitted 
is returned in the X register. 

Error in I/O buffering. An initial no-wait I/O request 
either was not issued or was rejected. 

Significant only for writing on magnetic tapes and RAD 
files. 

Significant only for reading backward and for position-
ing magnetic tapes and sequential RAD files via 
M:CTRL. 

Significant only for sequential RAD files. 

Significant only for blocked or compressed sequential 
RAD files. 

record is EBCDIC or binary. Therefore, M:READ wi II set 
up the proper order bytes for the actual device, using the 
II pseudo order by te" given in the call to M:READ only as 
a guide. The user may request fewer bytes than are in the 
record and only this number will be returned in his buffer. 
However, if more bytes are requested than are in the rec­
ord, only the bytes in the record will be read. In any 
case, the actual number of bytes read will be returned in 
the X register when the completion code is returned, and 
if this is not the same as the number of bytes requested, an 
II incorrect length" code wi II be returned. While it is not 
always necessary for the user to check all possible return 
codes, it maybe useful to printthem out to aidindebugging. 

Using M:READ, a user can read 80 EBCDIC bytes regardless 
of whether they come from cards, paper tape, magnetic 
tape, keyboard/printer, or RAD. M:READ will perform 



standard editing from paper tape to give a record a format 
identical to card image output. 

By using a "read and no wait" followed later by a "check 
for input complete" the user can effectively overlap input 
and compute. 

The order code XIOOI is used to request informdtion about 
an unknown device, and may be helpful in determining the 
optimum blocking sizes to use. 

REAL-TIME PRIORITY 

All of the I/O routines are reentrant, and any input can be 
interrupted for a higher-priority task up to the II point of no 
return ll of setting Monitor status flags and loading channel 
registers. External and internal interrupts are inhibited for 
up to 100 microseconds of CPU time during the actual SIO 
sequence. Keeping a high priority task active and looping 
on an input request to a busy device enables the task to 
seize control of the channel or device as soon as the cur­
rent I/O operation completes. 

SPECIAL EDITING FOR CARD READER 

Read Automatic. Any cards with a "1" and "2" punch in 
column 1 are automatically read as binary; all other cards 
are read as EBCDIC or BCD. (For nonstandard binary cards, 
the user must use "read binary".) It is possible to specify 
that all cards from a certain file are to be read as BCD and 
converted by the M:READ routine to EBCDIC before being 
returned to the user. Since this would apply only to one 
file, it is possible to read some cards in EBCDIC and some 
in BCD from the card reader. (BCD c:ard codes are pro­
duced by an IBM 026 keypunch, and EBCDIC card codes 
are produced by an IBM 029 keypunch.) The EBCDIC 
record size is 80, and the binary record size is 120 bytes. 

An incorrect length status is returned if the requested byte 
count does not exactly match. An "end-of-file" status is 
returned when an EBCDIC card that begins with! EOD is 
input into the userls buffer. An "end-of-tape" status is 
never returned. 

Read Binary. An II incorrect length" status is returned if 
the requested byte count does not equal the maximum num­
ber of bytes requested in the calling sequence. The num­
ber of bytes requested, up to a maximum of 120, are input 
in the userls buffer. "End-of-file" and "end-of-tape" status 
codes are never returned. 

SPECIAL EDITING FOR PAPER TAPE OR KEYBOARD/ 
PRINTER 

Read Automatic. All input from paper tape or keyboard/ 
printer is initiated in a one-byte-at-a-time mode. From 
paper tape, the read order is always II read ignori ng leader". 
-If the first byte is a code of X llCI, XI3CI, XIFFI, XI9FI, 
XIBFI, XIDft, or X?8 1 (which can only happen with paper 
tape), the M:READ routine switches to a binary mode and 

reads up to 119 more bytes (for a tota I of 120 in the record). 
The code byte will be the first byte in the userls buffer. 

Code bytes are all inval id EBCDIC codes in the sense that 
they are not printable graphics or control codes. Since 
they are all supersets of the card reader "1 and 2 punch" 
rule for column one, the same codes for "read automatic" 
can be used for the card reader as for paper tape and, in 
both cases, the code is part of the userls data buffer. If 
the first byte from the paper tape or keyboard/printer is not 
one of the binary codes M:READcontinues to read one byte 
at a time unti I a NEW LINE code is encountered. 

When a NEW LINE code is encountered, input transmission 
is terminated and the line image is filled out with blanks 
to the requested byte count. The NEW LINE code is not 
transmitted to the userls buffer. (If a NEW LINE code is 
the first code in the input line, it is ignored.) 

Thus, all EBCDIC records are of variable length, up to the 
maximum requested or until a NEW LINE is encountered. 
Further, EOM and cent (i) have special meanings within 
the userls data line. An EOM causes the entire line up to 
the present position (including the EOM byte) to be dis­
carded. A i sign acts like a backspace. For each I- sign 
received, this byte and the byte preceding it are thrown 
away. 

Whenreading binary records in the automatic mode, 120 bytes 
are read regardless of the number of bytes requested. For 
EBCDIC records, the paper tape is read up to and including 
the NEW LINE code. For either EBCDIC or binary records, 
not more than the maximum number of bytes requested is 
transmitted to the userls buffer. The requested byte count 
must be 80 for EBCDIC records and 120 for binary records. 
Any other byte counts result in an lIincorrect length" 
status return. 

An "end-of-fi le ll status is returned when an EBCDIC record 
that begins with! EOD is input into the userls buffer. 

Read Binary From Paper Tape. The Read Binary order for 
paper tape is "read ignoring leaderll. The physical record 
size is the number of bytes requested by the userls input. 
The next record starts immediately following the last byte of 
the previous record and the requested byte count determines 
the end-of-record. II Incorrect length" and "end-of-fi le ll 

status codes are never returned. II End-of-tape" status is 
not returned, even when the paper tape runs off the reader. 

Read Binary From Keyboard/Printer. A read binary order 
causes the keyboard/printer to read the exact number of 
bytes specified. RBM performs no editing, and no bytes 
(including NEW LINE codes) are considered control bytes. 
"Incorrect length", II end-of-tape" , and "end-of-file" 
status codes are never returned. 

SPECIAL EDITING FOR MAGNETIC TAPE 

Read EBCDIC or binary. Binary and EBCDIC modes are 
identical on 9-track tape, and M:READ supports only the 

Service Routines 35 



BCD and packed-binary mode/ for 7-track tapes. Only the 
number of bytes requested is transferred to the user's buffer 
regardless of the physical record. "Incorrect length" status 
is returned when there are either too few or too many bytes 
in the input record, and the tape is positioned at the start 
of the next physical record. 

"End-of-fi Ie" status is returned when a fi Ie mark is sensed 
on the magnetic tape; "end-of-tape" status, when the phys­
ical end-of-tape mark is sensed and standard error recovery 
is specified. If both are sensed at the same time, the "end­
of-tape" status is returned. 

The Read Backward order produces a buffer with data in an 
inverted condition. If the tape is at the load point when 
the Read Backward order is given, no data is transmitted 
and "BOT" status is returned. Read Backward wi II be 
ignored for devices other than 9-track magnetic tape. 

SPECIAL EDITING FOR SEQUENTIAL RAD FILES 

Read Automatic or Binary. On a RAD, binary and EBCDIC 
modes are identical. When reading from blocked files, a 
blocking buffer must be supplied. If the calling program 
has not specified a blocking buffer, M:READ will call 
M:OPEN to reserve a buffer from the calling task's buffer 
pool. If no buffer is avai lable, M:READ exits with a 
"blocking buffer unavailable" status. 

Compressed records are decompressed by M:READ so that 
only the expanded record, without compression codes, is 
input into the user's buffer. 

A byte count can be requested that is less than, equal to, 
or greater than the file's logical record size. The number 
of bytes requested, up to a maximum of the logical record 
size, is always transferred. If the byte count does not equal 
the logical record size, "incorrect length" status is returned. 
In any case, the fi Ie is positioned to the next logical record, 
regardless of the byte count transferred. For compressed 
files, the requested byte count is compared to the byte 
count of the expanded record instead of the logical record 
size. "End-of-fi Ie" status is returned when the fi Ie is 
positioned at the logical EOF. "End-of-tape" status is 
returned when the fi Ie is positioned at the logical EaT. 
This is true whether or not error recovery is specified. 

A Read Backward order wi II be interpreted as a Read order. 

SPECIAL EDITING FOR RANDOM-ACCESS RAD FILES 

Read Automatic or Binary. Binary and EBCDIC modes are 
agai n identical. The exact number of bytes requested will 
be put into the user's buffer and" incorrect length" status 
will not be returned. One or more granules will be read to 

tThe user should be thoroughly familiar with the BCD and 
packed-binary mode if 7-track magnetic tape is used. See 
the 7-Track Magnetic Tape System Reference Manual, 
Publication 90 09 78). 

36 Service Routines 

satisfy the byte count. RAD space between granules is lost. 
Unused parts of granules are ignored. 

If the Read begins or extends beyond the file's ending 
boundary, no data is transmitted and "end-of-tape" status 
is returned. This is true whether error recovery is specified 
or not. The granule displacement must always be specified; 
if not, a "calling sequence errorll is returned. 

Note: For all RAD files, no transfer will be initiated that 
crosses a track boundary. Instead, it will be broken 
into two transfers: one to write to the end of the 
track, and a second to complete the transfer. There­
fore, in a "no-wait ll operation, a check must be 
requested to complete the transfer. If an AIO Re­
ceiver is specified, it will be entered each time 
channel end occurs, but it also must be specified in 
each Check operation call. 

M:WRITE (General Write Routine) 

M:WRITE provides independent output with standard editing 
and standard error detection and correction. The error 
handling procedure is optional on each call to M:WRITE. 
The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:WRITE 

ADRLST is a pointer to the argument list, which is a set of 
two to six words in the user's program or in a temporary 
stack. The argument list consists of six words: 

word 0 

ORDER 

o 2 3 4 5 7 8 15 

where 

F = 1 if a device-fi Ie number is specified. 

F = 0 if an operational label or device unit is 
specified. 

A = 1 if an AIO Receiver address is specified. 

A = 0 if no Ala Receiver address is specified. 

Note: only a foreground operation can specify 
this. 

w = 1 if wait for completion is unconditional. 

W = 0 if wait is only for" initiate and return"; 
return is immediate if the operation cannot be 
started immediately. 



E = 1 if standard error recovery is to be performed 
at channel end for this operation. t 

E=O if no error recovery is to be attempted. 

R = 1 if a RAD granule displacement is specified (can 
only be specified for random-access RAD fi les). t 

R = 0 if a RAD granule displacement is not specified. 

ORDER is one of the following pseudo order bytes: 

Order Operation 

X'OO' Return information about this device. 

X'Ol' 

X'03' 

X'04' 

X'05' 

X'07' 

Write binary. 

Write file mark or IEOD. 

Check previous input for completion 
(after a II no wait ll initiation). 

Write EBCDIC. 

Check write (RAD only). 

word 1 

Operational label or file number 

o 15 

word 2 

Address of buffer containing data 

o 15 

word 3 

Number of bytes to transmit 

o 15 

The byte count must be an even number when wri ti ng on 
RAD fi les and may not exceed 65,536. It may be either 
even or odd for all other devices, but cannot exceed 
8192 bytes. If an odd byte count is requested, the first 
byte is written from the right half Of the word and the left 
half is ignored. If an even byte count is requested, the 
byte is written from the left half of the first word. 

Output to the card punch assumes an even byte count. An 
extra byte at the start of the buffer issent if the count is odd. 

tFor magnetic tapes, RAD, or disk pack, five attempts 
for error recovery wi II be made if E is specified. If I/O 
without a WAIT is specified, error recovery wi II not be 
performed until a IICheck/Write ll is issued by the user. 

word 4 

AIO Receiver address or RAD granule displacement 

o 15 

This is the address of the closed AIO Receiver subroutine 
called by the I/O interrupt task at the channel end, if 
A == 1 (word 0). If A == 0, this is the RAD granule displace­
ment (see word 5). 

word 5 

RAD granule displacement (optional) 

o 15 

If an AIO address is specified (A == 1, word 0), word 5 
indicates the displacement of the granule from the start of 
the file (starting with a displacement of zero) where the I/O 
transfer begins. If A == 0, word 4 is the RAD granule dis­
placement. See Chapter 6 for further detai Is. 

The return is to the location in the L register. The B regis­
ter is always saved. 

The status is returned in the E, A, and X registers. Status 
and method of returning status are the same as for M:READ. 

M:WRITE FUNCTIONS 

M:WRITE is designed to write one physical record on the 
device specified, regardless of the device type. Because 
of differences in Write orders for the card punch, it is 
necessary to specify whether the output record is binary or 
EBCDIC. (For most other devices, the difference is not 
meani ngful.) 

Not more than one physical record will be written for a 
single Write order. For devices I ike the card punch, if 
fewer than a standard number of bytes are specified (80 for 
EBCDIC and 120 for binary), the remainder of the record 
is padded with blanks (EBCDIC) or zeros (binary). Most of 
the general comments which apply to M:READ also apply to 
M:WRITE. 

Write End-of-File. Order code X'03' produces the fol­
lowing results: 

Device Result 

li ne Pri nter No effect 

Keyboard/Pri nter No effect 

Card Punch I EOD card 

Paper Tape Punch IEOD NL 

Magnetic Tape EOF 

RAD (sequential fi Ie) Logical file mark 

RAD (random file) Logical record mark 

Service Routines 37 



For devices where the Write End-of-File order has no mean­
ing, a status of "operation not meani ngful for this device" 
will be returned. If a magnetic tape or sequential RAD file 
is positioned at the end-of-tape, the end-of-fi Ie will be 
output. (This is the only writing allowed past the end-of­
tape when error checking is specified.) The Write End-of­
File order for any RAD file causes an implicit call to 
M:CLOSE and any data written in the blocking buffer will 
be output on the RAD. 

Write EBCDIC to Keyboard/Printer. The first byte is as­
sumed to be a carriage control byte and is never printed. 
If the byte is a zero or a one, double spacing is used; other­
wise, single spacing is used. In any case, this first byte 
is not sent to the keyboard/printer. Trailing blanks are 
removed and a NEW LINE code is inserted as the last byte 
(if NEW LINE is not already present). If there are more 
than 85 pri ntable characters, those beyond 85 are ignored, 
and a status of II incorrect length" is returned. 

Write Binary to Keyboard/Printer. The exact number of 
bytes specified is written. No format byte is assumed, no 
editing is performed, and no I ine format is imposed. It is 
the user's responsibility to insert NEW LINE codes if more 
than 85 bytes are output. A maximum of 256 bytes may be 
output with one operation. 

Write EBCDIC to Paper Tape. Trailing blanks are removed 
and a NEW LINE code is inserted as the last byte (if not 
already present). The entire record, specified by the byte 
count, is edited and output and an II incorrect length ll status 
is never returned. 

Write Binary or EBCDIC to Line Printer. The first byte per 
record is always assumed to be a carriage control (format) 
byte, and is never printed. With any odd byte count (as in 
all of the I/O), the first byte transmitted is from the right 
half of the first word, and the left half of the first word is 
ignored. 

The print routine changes the logical format byte (as shown 
below) to the proper physical format code for the printer. 
If more than 133 bytes are specified, the remainder beyond 
133 bytes is ignored and an II incorrect length ll status re­
turned. If fewer than 133 bytes are spec i fi ed, the ri ght 
(trailing) portion of the printed image will contain blanks. 
However, the user's buffer is not modified. The print rou­
tine wi" first data chain on the order byte and format byte 
in the Monitor area and then on the user's print image. 

If it is desired to force single spacing, there may be a word 
appended to the beginning of the user buffer with a blank 
in the right half; the byte count is then increased to an odd 
value, and up to 132 bytes from the original buffer will be 
printed with the extra IIblank ll used as the format byte to 
force single spacing. The format codes (in EBCDIC) are 

Format Byte 

blank 

Effect 

No space before printing, single 
space after printing. 

38 Servi ce Routi nes 

Format Byte 

o 

Effect 

Page eject before printing, single 
space after printing. 

Single space before printing, single 
space after printing. 

No space before pri nti ng, no space 
after pri nti ng. 

Any other format code wi II be treated I ike a blank but wi II 
not be printed. These are standard FORTRAN format char­
acters with the exception of the minus sign (-) which is sub­
stituted for the standard FORTRAN plus sign (+) to allow 
overprinting. The user can use M:IOEX (General I/O 
Driver) to send the standard format code or any other format 
code for XDS printers. 

Write EBCDIC to Card Punch. Regardless of the byte count 
requested, 80 bytes are always output. If fewer than 80 
bytes are requested, the punch image is fi lied out with 
blanks. The image is moved to a Monitor buffer; the user's 
buffer is never modified. If more than 80 bytes are re­
quested, only the first 80 are output and the surplus is ig­
nored. In th is case, II incorrect length ll status is returned. 
If the file has been declared BCD at system initialization, 
all EBCDIC output records are converted to BCD before 
being punched. (The operation is performed in the Moni­
tor's buffer.) 

Write Binary to Card Punch. Regardless of the byte count 
requested 120 bytes are always output. If less than 
120 bytes are requested, the punch image is padded with 
trailing zeros. (The image is moved to a Monitor buffer; 
the user's buffer is never modified.) If more than 120 bytes 
are requested, only the first 120 wi II be output and the 
remainder ignored. In this case, an lIincorrect length ll 

status is returned. 

Write EBCDIC or Binary on Magnetic Tape. Variable-length 
records are possible; no check is made of the data and no 
editing is performed. The exact byte count specified (up 
to the allowable maximum) is always written. t No II incor­
rect length ll status is ever returned. 

If the tape is positioned past the end-of-tape marker and 
error checking is specified, the data is not transmitted and 
"end-of-tape" status is returned. If error checki ng is not 
specified, the data is transmitted and the lIend-of-tape ll 

sta tus is not returned. 

If the tape is physically write-protected and an II initiate 
no-wait ll order is requested, the IIwrite-protected ll status 

tFor 7-track magnetic tape, the data is recorded in either 
BCD or packed-binary format, which may cause an "in­
correct length" status if the record is not read with the same 
byte count used to wri te the record (see the 7-Track Mag­
netic Tape Systems Reference Manual, Publication 90 09 78). 



is returned. If an II initiate and waWI order is requested, 
the Monitor puts out an alarm and waits for operator action 
(see the pseudo order bytes under the definition for ORDER 
under word 0 of the argument list). 

Write EBCDIC or Binary on Sequential RAD Files. When 
writing on blocked files, a blocking buffer must be suppl ied. 
If the call ing program has not specified a blocking buffer, 
M:WRITE will call M:OPEN to reserve space in'the taskls 
buffer pool. If no buffer is avai lable, M:WRITE exits with 
a "blocking buffer unavailable" status. 

Records to be written on compressed files are edited with 
compression codes inserted in a Monitor buffer. The data 
in the user's buffer remains unchanged. 

For compressed files only, the logical record size has no 
meaning and the requested number of bytes is compressed 
and output. For a II other fi I es, a byte count I ess than, 
equal to, or greater than the logical record size can be re­
quested and the requested number of bytes, up to the maxi­
mum of the logical record size, is always output. If the 
byte count is greater than the logical record size, an II in­
correct length ll status is returned. In any case, the fi Ie is 
positioned to the next logical record regardless of the byte 
count transferred. 

An "end-of-tape" status is returned when the fi Ie is po­
sitioned at the logica I EaT (whether error checki ng is 
specified or not or if the current operation will cross the 
logical EOT). Data cannot be output past a logical EOT. 

If a Write is attempted on a file that is either logically 
write-protected or on a RAD track that is physically write­
protected, a IIwrite-protected" status is returned and no 
data is output. 

Since the RAD has no read-after-writecapabilityas do mag­
netic tapes, a separate Check-Write operation is essential 
to ensure absolute validity of the data output. However, 
since a separate Check-Write operation requires as much 
time as the original write operation, and the RAD has a high 
degree of reliability, the capability should only be used when 
the data is sensitive or cannot be regenerated. Backspacing 
operations must be performed before the Check-Write oper­
ation, since no repositioning is performed at this time. For 
compressed or blocked fi les, no Check-Write is allowed and 
a status oflloperation not meaningful II will be returned. 

Write EBCDIC or Binary on Random-Access RAD Files. Al­
though a granule size may be specified when a random fi Ie 
is defined, the size does not restrict the maximum number 
of bytes that may be written. However, each Write opera­
tion begins at the start of a granule, and uncompleted gran­
ules are fi lied out with zeros. The exact number of bytes 
requested is output; never with II incorrect length" status 
return. If the Write begins or extends beyond the file's 
ending boundary, no data is transmitted and an "end-of­
tape" status is returned, whether or not error recovery is 
specified. The sector displacement must always be speci­
fied; if not, a IIcalling sequence error ll status is returned. 

If a Write is attempted on a file that is either logically 
write-protected or on a RAD track that is physically write­
protected, a write-protected status is returned and no data 
is output. 

Note: For all RAD files, no transfers will be initiated that 
wi II cross a track boundary. Instead, it wi II be 
broken into two transfers: one to write to the end 
of the track, and a second to compl ete the transfer. 
Therefore, in a "no-wait" operation, a check must 
be requested to complete the transfer. If an AIO 
Receiver is specified, it will be entered each time 
channel end occurs, but it also must be specified in 
each check operation call. 

M:CTRL (Genera I Control Routine) 

M:CTRL provides device-independent positioning capabili­
ties for magnetic tapes (both 7-track and 9-track) and for. 
sequential RAD fi les. All M:CTRL control functions are 
exempt from channel time limits. The calling sequence is 

LDX 

RCPYI 

B 

ADRLST 

P,L 

M:CTRL 

ADRLST is the pointer to the argument list, which is a set 
of two consecutive words either in the user's program or in 
a temporary stack. This argument list appears as follows. 

word 0 

ORDER 

o 2 3 15 

where 

F = 1 if this is a device-fi Ie number. 

F = 0 if this is an operational label or device unit 
number. 

W= 1 if wait for operation is to be initiated.
t 

W = 0 if no wait for operation is to be initiated 
when device/channel is busy.t . 

ORDER is one of the following pseudo order bytes: 

Order 

XIEBI 

X'EFI 

XIFBI 

Operation 

Space Record Backward 

Space Record Forward 

Space Fi Ie Backward 

tThe W flag has a different function for M:CTRL than for 
M:READ/M:WRITE. If the operation is initiated, control 
will not be restored to the calling task until the operation 
is complete. 

Service Routines 39 



word 1 

o 

Order 

X'FF' 

X'2B' 

X'3B' 

Operation 

Space File Forward 

Rewind Off Line 

Rewi nd On Li ne 

Operational label or file number 

15 

Return is to the location in the L register. The B register is 
always saved. Status is returned in the E, A, and X regis­
ters, as in M:READ. 

Note: For random-access RADfiles, where these operations 
are not meaningful, an "operation not-meaningful" 
status wi II be returned. 

M:CTRL FUNCTIONS 

If the device is a magnetic tape or a sequential RAD file, 
it is positioned as indicated. The record spacing commands 
are utilized for physical records and are not meaningful for 
FORTRAN logical records. 

Space Record Backward. The Space Record Backward order 
positions a magnetic tape to the start of the previous physi­
cal record. If the tape is already at load point, the order 
is ignored and a BOT status is returned. If the previous rec­
ord was either an end-of-fi Ie or end-of-tape marker, EOF 
or EOT status is returned. 

For compressed RAD fi les, this order is illegal and a status of 
"operation not meaningful for this device" will be returned. 

For sequential RAD files, the fjle is positioned to the start 
of the previous logical record. If the file is positioned at 
the logical BOT, the order is ignored and a BOT status is 
returned. If the fi Ie is positioned immediately beyond the 
logical EOF, EOF status is returned and the file is reposi­
tioned to the point immediately before the logical EOF. If 
the fi Ie is blocked and there is output data in the blocking 
buffer, it is written on the RAD before the file isrepositioned. 

Space Record Forward. The Space Record Forward order 
positions a magnetic tape to the start of the next physical 
record. If the record skipped was either an end-of-fj Ie or 
end-of-tape marker, EOF or EOT status is returned. 

For compressed RAD files, this order is illegal and a 
status of "operation not meaningful for this device" will be 
returned. 

For sequential RAD files, the fi Ie is positioned to the start 
of the next logica I record. If the record ski pped was the 
logical EOF, an "end-of-file" status is returned. If the 
file is positioned at the logical EOT, the record is not 
skipped and an "end-of-tape" status is returned. 

40 Service Routines 

Space File Backward. The Space File Backward order 
positions a magnetic tape to either the start of the previous 
file mark (and EOF status is returned) or load point (if there 
is no fi Ie mark). If the tape is already at the load point, 
the order is ignored and BOT status is returned. 

For sequential RAD fj les, the fi Ie is positioned to either 
the start of the logical EOF or to the logical BOT. If the 
file is positioned immediately beyond or at the logical EOF, 
it is repositioned to the point immediately before the logical 
end-of-fi Ie, and EOF status is returned. If the file is al­
ready positioned at the logical beginning-of-tape, the order 
is ignored and BOT status is returned. If the file is blocked 
and there is output data in the blocking buffer, it is written 
on the RAD before the file is repositioned. 

Space File Forward. The Space File Forward order positions 
a magnetic tape to either the start of the next fjle or the 
end-of-tape mark, whichever is encountered first. Either a 
status of EOF or EOT is returned. 

For sequential RAD fi les, the fi Ie is positioned immediately 
at the logical EOF and "EOF" status is returned. If the 
file is already positioned beyond the logical EOF or no 
logical EOF has been written, the order is ignored and an 
"illegal RAD sequence" status is returned. If the file is 
blocked and data has been written in the blocking buffer, 
it wi" be wri tten out before the fi Ie is repositioned. 

Rewind On-Line. The Rewind On-Line order rewinds mag­
netic tape to the load point. If the tape is already at the 
load point, no error status is returned. 

For sequential RAD files, the file is positioned to the logi­
cal BOT. If the file is already at the load point, no error 
status is returned. If the file is blocked and there is output 
data in the blocking buffer, it is written on the RAD before 
the order is executed. 

Rewind Off-Line. For magnetic tape, the tape is rewound 
and unloaded. The Rewind Off-Line operation is useful 
for a "save" tape or for a tape at the end~of-reel when a 
new tape must be mounted. The user must control and check 
this condition. 

For sequential RAD fj les, the file is closed by a call to 
M:CLOSE. If the fjle is blocked and there is output data 
in the blocking buffer, the data is written on the RAD be­
fore the order is executed. In addition, the file directory 
is updated on the RAD to reflect the current position of- the 
logical fi Ie mark. 

M:DATIME (Calendar Date and Time of Day) 

M:DA TIME provides the calendar date or time of day, or 
both, to eitherforeground or background programs in EBCDIC 
format. The calling sequence is 

LDX 

RCPYI 

B 

ADRLST 

P,L 

M:DATIME 



ADRLST is the pointer to the argument list, which is a set 
of two consecutive words either in the user's program or in 
a temporary stack. This argument list appears as follows: 

word 0 

o 2 3 15 

where 

D = 1 if return calendar date is specified. 

D = 0 if calendar date is not required. 

T = 1 if return time of day is specified. 

T=O if time of day is not required. 

S = 1 if date and time are supplied by the user (in 
Address and Address + 1). 

S = 0 if current date or time of day, or both, are 
to be used. 

word 1 

Address 

o 15 

where Address is the location where the date and time of 
day are stored. 

Return is to the location in the L register. The B register is 
always saved. 

M:DA TIME FUNCTIONS 

K :CLOCK in the communication region is a pointer to the 
accounting table that contains the date and time. The date 
and time are set at system initialization and can be reset by 
the operator through unsolicited key-ins. The date is auto­
matically advanced and provisions are included for year 
changes including leap-year adjustment. Thus, under con­
tinuous operation, only adjustments to accommodate day­
light savings time changes are required. The date or time 
of day, or both, are stored in the following format in the 
area of core specified by word 1 of the argument list: 

Date: M 

~ 
D 

Y 

b, 

Time: H 

M 

M 

D 

~ 
Y 

b, 

R 

N 
{

2 bl anks are sup­
plied when both 
date and time are 
requested 

Note: Time of day is given in military time (0000-2359). 

If the date and the time are supplied by the user (S = 1), 
the times suppl ied in Address and Address + 1 wi II be over­
laid by the calendar date or time, or both. This option is 
used by the Job Control Processor! PURGE command. 

M:TERM (Norma I Exi t from Background Programs) 

M: TERM provides an entrance back to the Monitor on a 
normal termination of a background program. The calling 
sequence is 

RCPYI P,L 

B M:TERM 

M: TERM FUNCTIONS 

If called by a foreground program, control wi II be trans­
ferred to M:EXIT to perform the exit sequence for that task. 
On calls from the background the L register must be set to 
a background address or the background ca II wi II be aborted 
with a protection violation. 

All I/O is allowed to run down. All files utilizing block­
ing buffers will have their blocking buffers closed out. If 
an unconditional postmortem dump was specified, it will be 
performed at this time. The Control Command Interpreter 
wi II then be read into the background and wi II read the 
next control command. 

M:ABORT (Background Abort Routine) 

When a background program fails for any reason, a call to 
M:ABORT provides a method of clearing the background 
program out of core memory and for terminating all active 
I/O for the background program. The calling sequence is 

LOA LOC 

LOX CODE 

RCPYI P,L 

B M:ABORT 

CODE is a word of EBCDIC information that is printed on 
the DO and OC devices to show why the job was aborted. 

Return is never to the location in the L register. If the call 
is from a real-time foreground program, M:EXIT is called to 
perform the exit functions. If the calling task occupies the 
nonresident foreground area, it wi II be disabled and an un­
load operation wi II be performed. On calls from the back­
ground, the L register must be set to the background or the 
background call wi II be aborted with a protection violation. 
All I/O in progress is allowed to complete and a postmortem 
dump wi II be performed at this time if previously requested. 

Service Routines 41 



M:SAVE (Interrupt Save Routine) 

M:SAVE routine performs the full context switching when 
a foreground interrupt occurs. It is available only for fore­
ground programs that are connected directly to an interrupt. 
The calling sequence is 

RCPYI P,L 

B M:SAVE 

ADRL TCB 

where TCB is the address of the Task Control Block for the 
task. 

Return is to the value in the L register + 1. The contents of 
all registers except A and L are transferred to the TCB. 

M:SAVE FUNCTIONS 

The contents of A and L must be saved in the proper place 
in the TCB before the task calls M:SAVE. M:SAVE then 
saves the original value of X, T, B, and E in the TCB. The 
interrupting task has its own floating accumulator set into 
locations 0001-0005 and the previous task's floating ac­
cumulator pointers are saved. The M:SAVE routine stores 
the temporary stack and TCB pointers in locations 0006 and 
0007 for this current task and saves the old values in the 
interrupting task's TCB. 

If the flag in the TCB is set for II no temporary storage" 
M:SAVE saves only the hardware registers and the TCB 
pointers, and not the full context. 

If Clock 1 has been reserved for RBM accounting, M:SAVE 
will record the start time of the first interrupting foreground 
task and will trigger the RBM Control Tasktocalculatefore­
ground run time. 

An additional entry point, M:FSAVE, is available for users 
of the Sigma 3 optional instruction, Store Multiple. This 
entry point, with an address literal in cell X'C7', assumes 
that all registers have been saved, but performs the remainder 
of the functions of M:SAVE as listed above. The calling 
sequence is 

RCPYI P,L 

B *X'C7' 

ADRL TCB 

where TCB is the address of the Task Control Block for the 
task. 

M:EXIT (Interrupt Restore Routine) 

M:EXIT restores the contents of all registers prior to exit 
from a foreground task, switches the full context back to 

42 Service Routines 

the previous task, and performs the actual exit sequence. 
The calling sequence is 

RCPYI P,L 

B M:EXIT 

DATA -1 

DATA RETURN 

Return is to the interrupted task at the address saved in the 
PSD. All registers are restored to the same value they had 
at the time of the interruption. 

If the two optional data words (DATA - 1 and DATA RETURN) 
are used, M:EXIT restores all registers and context, except 
overflow and carry and the interrupt status; but instead of 
performing the hardware exit, M:EXIT branches to RETURN. 

M:EXIT FUNCTIONS 

The operations performed by M:EXIT are essentially the re­
verse of those in M:SAVE. It is necessary to inhibit inter­
rupts for about 11 microseconds for the actual exit sequence, 
but it is not necessary to call M:EXIT to perform the exit se­
quence if it can be performed by the user's program. 

The TCB contains a flag to indicate whether any temporary 
storage is used. If the task does not use any Monitor I/O 
routines or the floating accumulator, no temporary storage 
is needed. In this case, only the hardware registers are 
restored. 

M:HEXIN (Hexadecimal to Integer Conversion) 

The M:HEXIN routine converts a hexadecimal number (rep­
resented in EBCDIC) to a binary integer. The calling 
sequence is 

LDA left 

RCPY A,E 

LDA right 

RCPYI P,L 

B M:HEXIN 

where left and right contain the EBCDIC codes for the hexa­
decimal number (the left and right part of a possible four­
byte field). 

Return is to the location in the L register. The result is in 
the A register, the X register is changed, and the B register 
is unchanged. 

M:HEXIN FUNCTION 

Blanks and zeros are treated as hexadecimal zeros. No tem­
porary storage is used and no error checking is performed. 



M:INHEX (Integer to Hexadecimal Conversion) 

TheM:INHEX routine converts a binary integer to a hexa­
decimal representation in EBCDIC code. The calling se­
quence is 

LDA integer 

RCPYI P,L 

B M:INHEX 

where integer is the value to be converted. 

Return is to the location in the L register. On return, the 
E register contains the leftmost two bytes, and the A regis­
ter contains the rightmost two bytes. The X register is 
changed, but the B register is unchanged. 

M:INHEX FUNCTION 

Four fields of four-bit hexadecimal codes are converted to 
four fields of eight-bit EBCDIC equivalents. No temporary 
storage is used. 

M:CKREST (Checkpoint/Restart Background) 

M:CKREST checkpoints the background (i. e., writes it out 
onto a predefined area on the RAD), turns the background 
space over to the foreground program, and then restarts the 
background when requested. The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:CKREST 

ADRLST is a pointer to an argument list, as follows: 

word 0 

023 15 

where 

C = 1 if request is to "checkpoint" the background. 

C=o if request is to II restart" the background. 

R = 1 if a Checkpoint Complete Receiver is to be 
informed when the checkpoint is complete. (Valid 
only if C = 1 and P = 0.) 

R = 0 if no Checkpoint Complete Receiver is used. 

P = 1 if checkpoint is to be performed at the level 
of the calling task (meaningful only if C = 1). 

P = 0 if checkpoint is to be performed at the level 
of the RBM Control Task (meaningful only if C= 1). 

word 1 

Checkpoint Complete Receiver 

o 15 

The Checkpoint Complete Receiver should be used like an 
AIO Receiver. That is, after requesting a checkpoint, the 
foreground program should release control by a call to 
M:EXIT and regain control through the specified receiver 
address when the checkpoint operation is completed. Only 
a foreground program can checkpoint the background; a 
background program cannot checkpoi nt the background area. 

Return is always to the location contained in the L register. 
The B register is always saved. The A register contains the 
status (1 if operation is impossible; 0 if successful). 

M:CKREST FUNCTIONS 

Checkpoint. All active I/O for the background is allowed 
to complete but no error recovery is performed for this I/O 
unti I the background is restarted. Peripheral devices dedi­
cated to the background should not be repositioned. 

When all I/O has terminated, the entire background space 
is written out onto a prespecified area of the RAD and the 
background is set II protected". If the background is truly 
lI emptyllt when the request is made, the checkpoint is per­
formed immediately, and no RAD is required for the check­
pointing procedure. If a Checkpoint Complete Receiver 
was specified, it will be entered with the L register set 
to the return address and will be run at the RBM Control 
Task level. 

A checkpoint operation wi II be automatically performed 
while loading a nonresident foreground program that extends 
into the background. When the active nonresident program 
unloads (see Monitor service routine M:LOAD), the back­
ground wi II be automatically restarted. When the check­
point operation is completed, the message! ! BKG CKPT is 
output to inform the operator. 

Restart. A restart is always performed at the priority level 
of the RBM Control Task. It is assumed that no peripherals 
have been repositioned. The core allocation table is re­
stored to the previous value before the checkpoint took 
place, and the background is then loaded in from the RAD 
and continues as before. 

tThis would occur after a ! FIN command was encountered 
or when the Monitor was in an idle state after an abort of 
an attended job. 

Service Routines 43 



If no background program was in progress when the check­
point was called for, the background is set to an unprotected 
status but no attempt is made to reload a program from the 
RAD when the foreground terminates. 

The message!! BKG RESTART is output to inform the opera­
tor that the background has been released by the foreground. 
See Chapter 6 for more detai Is. 

M:LOAD {Absolute Core Image Loader} 

M:LOAD initiates the loading of the root segment of a resi­
dent or nonresident foreground program by entering the re­
quested program name into the queue stack. It also initiates 
the loadi ng of the root segment of a resident or nonresident 
foreground program or background processor upon request 
from the Job Control Processor. It releases {unloads} the 
nonresident foreground space for use by the next program 
in the queue. 

The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:LOAD 

ADRLST is a pointer to an argument list, as follows: 

word 0 

a 
o 2 3 15 

where 

P = 1 indicates a request to read from the specified 
device-file number (word 1). The device-file 
number must currently be assigned to a RAD file. 
(This option is restricted for use by the Job Control 
Processor .) 

P = 0 indicates a request to read the specified non-
resident foreground program from the user's processor 
RAD area. The program name is given in C1-CS. 

Q = 1 indicates the request is to be queued if it 
cannot be satisfied now. 

Q = 0 indicates the request is to be ignored if it 
cannot be satisfied now. 

u = 1 indicates an unload operation, in which case 
P and Q are not meaningful. 

u=o indicates a load operation. 

44 Service Routines 

word 1 

DFN or Cl and C2 

a 15 

word n 

C7 C8 

o 7 8 15 

where 

DFN is the device-file number. 

C1-CS is the program name {must be S characters, 
including trailing blanks}. 

Return is always to the location in the L register. The con­
tents of the B register are always saved and the A register 
contains status codes, as follows: 

A Register 

o 

Meaning 

Operation is successful. 

Request cannot be honored at this time 
(this could occur if Q = 0 and a non­
resident foreground area was already 
committed; or if Q = 1 and the queue 
stack was full). 

M:LOAD FUNCTION 

After savi ng the nonresident program name or device-file 
number request, M: LOAD triggers the RBM Control Subtask 
S:LOAD and then exits to the location in the L register. 

The actual loading of the program is accompl ished at the pri-
0rity level of the RBM Control Task. S:LOAD will ensure 
that sufficient blocking buffers are available for those oper­
ational labels contained in the header record of the proces­
sor. If the request was for a nonresident foreground program 
that extends into area reserved for the background, S:LOAD 
automatically causes the background to be checkpoi nted. 

It is essential that each nonresident program executed in the 
nonresident foreground area terminate itself by a call to 
M: LOAD to unload, disable itself, and then exit via the 
normal interrupt exit routine (M:EXIT). This will release 
the nonresident foreground area for subsequent loads. 

For em unload request, M:LOAD triggers the RBM Control 
Task routine S:LOAD for the next load if any other entry is 
in the queue stack. If no additional requests are present 
and S:LOAD has checkpointed the background, S:LOAD 
triggers RBM Control Task S:REST for a restart. 

Note that M:LOAD inhibits interrupts for a short period 
whi Ie manipulating the queue stack (less than 100 J.lsec if no 
more than eight entries are waiting in the queue). 



M:OPEN (RAD File Open) 

M:OPEN reserves a blocking buffer from a buffer pool or a 
specified location, for a sequential blocked RAD fi Ie to 
which an operational label or device unit number had pre­
viously been assigned. 

The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:OPEN 

ADRLST is a pointer to the three-word argument list shown 
below. 

word 0 

o 
o 2 15 

where 

F = 1 if a device-fi Ie number (DFN) is specified 
(internal Monitor calls only). 

F = 0 if an operational label or device unit num-
ber is specified. 

B = 1 if a blocking buffer location is included in 
this call. 

B = 0 if no blocking buffer location is included, 
in which case M:OPEN attempts to find space in 
the task's buffer pool. 

word 1 

Operational label, device unit number, or DFN 

o 15 

word 2 

Address of blocking buffer (optional) 

o 15 

Return is to the location in the L register. The B register 
is restored. The following status information is contained 
in the A register on return. 

A Register Meaning 

o Operation successfuL 

Block i ng buffer a I ready defi ned. 

A Register 

2 

3 

4 

5 

6 

Meaning 

No space available in buffer pool. 

Illegal operational label or operational 
label unassigned. 

Not RAD file, or not a blocked RAD file. 

Blocking buffer outside of background 
for a fi Ie assi gned to the background. 

Illegal DFN. 

M:OPEN FUNCTION 

The address of the blocking buffer (either the one specified 
or one located from the task's buffer pool established by an 
ABS or $BLOCK command) is stored in the File Control 
Table. If no open request has been performed for a sequen­
tial blocked file by the user's program, M:READ, M:WRITE, 
or M:CTRL wi II ca II M:OPE N to allocate a buffer from the 
blocking buffer pool on the first data transfer operation. 

M:CLOSE (RAD File Release) 

M:CLOSE releases a RAO file {including the blocking buf­
fer if any} or releases the blocking buffer for a blocked file, 
but retains the file assignment. In either case, partially 
filled blocking buffers are written onto the RAD. The call­
ing sequence is 

LOX ADRLST 

RCPYI P,L 

B M:CLOSE 

AORLST is a pointer to the argument list, as follows: 

word 0 

o 
o 2 3 15 

where 

F = 1 if a device-file number is specified. 

F = 0 if an operational label or device unit number 
is specified. 

R = 1 if the device-fi Ie number is to be released. 

R = 0 if the device-fi Ie number and operational 

B = 1 

label remain assigned but the blocking buffer is 
to be released (the file is not to be repositioned). 

is a buffer is specified. 

B=O if no buffer is specified. 

Service Routines 45 



word 1 Return is to the location in the L register. The contents of 
the B register are always saved. The contents of the data 

Operational label, device unit number, or DFN keys are in the A register on return. 

o 15 

word 2 

Buffer location (optional) 

o 15 

Return is always to the location in the L register. The 
B register is always restored to its former value. The A reg­
ister contains the following completion status. 

A Register Meaning 

o Successful. 

2 

3 

4 

5 

Illegal DFN. 

The operational label is not assigned 
to a RAD file. 

Illegal operational label. 

I/O error writing blocking buffer or 
EOF onto RAD. 

No buffer avai lable to complete the 
c lose operation. 

M:CLOSE FUNCTIONS 

If the fi Ie is blocked and data has been written on it, the 
contents of the blocking buffer are written onto the RAD. 

If the blocking buffer was allocated from the task's buffer 
pool, the buffer is released. The EOF is written on the RAD. 

If R = 1, F = 0, and the operational label has a permenent 
assignment, the label is set" unassigned". If the label has 
no permanent assignment, the label is deleted from the table 
of operational labels. 

If an EOF has been written on the fi Ie {sequential fi Ie on~y 
it must also be written onto the RAD. To accomplish the 
writing, M:CLOSE requires a buffer, one sector in length, 
into which the file dictionary is read. If no buffer is speci­
fied, M:CLOSEattempts to allocate a buffer from the task's 
buffer pool {or will use the one already opened for this file 
if it is blocked}. If no buffer is avai lable and an EOFis to 
be written, the file is not closed and an error completion 
code is returned. 

M:DKEYS (Read Data Keys Routine) 

M:DKEYS provides a means for background programs to read 
the data keys on the processor Control Panel. The calling 
sequence is 

RCPYI 

B 

P,L 

M:DKEYS 

46 Service Routines 

M:WAIT (Simulated Wait Instruction) 

M:WAIT provides a means for background programs to exe­
cute a Wait instruction from nonprotected memory. The 
calling sequence is 

RCPYI P,L 

B M:WAIT 

The return is to the location in the L register. The B regis­
ter is always saved. The return does not take place until 
the operator performs an unsolicited S key-in. 

The Mon i tor types out the message 

! ! BEGIN WAIT 

and goes into a wait loop. 

Only a background program may use M:WAIT; a call from 
a foreground program results in a no-operation. 

M:SEGLD (Load Overlay Segments) 

M:SEG LD loads and/or executes an overlay segment, for 
either the foreground or background, from a file previously 
prepared and saved on the RAD by the Overlay Loader or 
the Absolute Loader. 

The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:SEGLD 

ADRLST is a pointer to the argument list. 

word 0 

o Segment ID 

o 2 3 7 8 15 

where 

W = 1 if an unconditional wait for completion is 
specified. 

W = 0 if loading is to be initiated only; control 
will be returned to the calling program. 



L = 1 control is to be transferred to the transfer 
address of the segment just loaded (valid only 
if W = 1). 

L = 0 control is to be returned to the calling 
program. 

R = 1 there is a IIloading completell receiver 
(meaningful only if W = 0). 

R = 0 no II loading complete ll receiver. 

word 1 

Operational label 

o 15 

The operational label is used to control the loading of the 
segment. The fil e must previ ousl y have been defi ned as a 
RAD fi Ie and set to the proper overlay program on the RAD. 
Background programs should use operational label PI. 

word 2 

ADRL of OV:LOAD 

o 15 

The symbol OV:LOAD must be declared as an external 
reference and is set by the Overlay Loader to the value of 
the Overlay Loader Control Table address in core. 

If the program is assembled in absolute form, the Absolute 
Loader will create the OV: LOAD table at the end of the 
root. Therefore the last item in the root would normally be 
an OV: LOAD EQU $. 

word 3 

Loading Complete Receiver 

o 15 

The Loading Complete Receiver is permissible only for fore­
ground programs and should be used in the same way as an 
AIO Receiver. That is, after loading is initiated the fore­
ground program should release control by a call to M:EXIT 
and regain control through the specified receiver address 
when the overlay operation is completed. 

On all calls specifying an II initiate onlyll, a check operation 
must be performed on the operational label designated to de­
termine the status of the load and to release the associated 
device-file number for subsequent use. 

On entry, return is to the location in the L register if the 
L parameter in word 0 of the calling sequence is 11011 ; other­
wise, control is returned to the newly loaded segment. The 

B register is always saved. On the return, the A register 
contains status showing the completion code, as follows: 

A Register 

o 
-1 

2 

Meaning 

Operation complete and successful. 

Irrecoverable I/O error. 

Invalid call. 

M:SEGLD FUNCTIONS 

A core table of 5n + 1 words is maintained at the end of the 
user1s root segment that defi nes the actual RAD addresses 
for the overlay segments. (OV:LOAD points to this table; 
n is the number of segments in the program.) The segments 
may be loaded in any order because of the random-access 
capability of the RAD. Using the Loading Complete Re­
ceiver and associated procedures can achieve greater effi­
ciency in foreground loading. 

M:DEFINE (RAD File Definition) 

M:DEFINE allocates a portion of the background temporary 
file area on the RAD for temporary use by the designated 
operational label or device unit number. This call is 
applicable to foreground operations only ff the fi Ie is 
previously assigned to a permanent RAD fi Ie. The calling 
sequence is 

LDA PTR (FORTRAN programs only) 

LDX ADRLST 

RCPYI P,L 

B M:DEFINE 

PTR is the absolute address of the FORTRAN Associated 
Variable. It is meaningful only if K = 1. 

ADRLST is a pointer to a four-word argument list. 

word 0 

F WP 0 K G 

078 9 10 
\~------~T~--------,I 

Fi I e Format Byte 

where 

F specifies the file format as follows: 

000 blocked 

001 compressed 

010 

110 

unblocked 

random 

o 
15 

Servi ce Routi nes 47 



WP = 11 if RBM write protection is specified. 

WP = 10 if foreground write protection is specified. 

WP = 01 if background write protection is specified. 

WP =00 if write protection is not desired. 

K = 1 if the A register contains the address of the 
FORTRAN Associated Variable. 

K = 0 if FORTRAN Associated Variable is not 
specified. 

G = 1 if a granule size for random fi les is specified; 

word 1 

otherwise, the granule size is determined by the 
sector size of the reference device (meaningful 
only if F = 110). 

Operational label or device unit number 

o 15 

where 

operational labels are EBCDIC 

device unit numbers are binary 

word 2 

Number of logical records in file 

o 15 

word 3 

Logical record size, or granule size if G=l (bytes) 

o 15 

The number of logical records in the fi Ie and the logical 
record size are used to calculate the actual temp space 
required. For compressed EBCDIC files, n card images can 
normally be accommodated by n/3 80-byte records. Thus, 
12,000 card images would require 4000 80-byte records 
(about 83 tracks on a 360-byte per sector RAD). For 
blocked, uncompressed fi les, the total area in sectors equals 
the number of records requested, divided by the number of 
logical records per sector. Thus, 120-byte binary card 
images can be placed three per sector on a 360-byte-per­
sector RAD. A 300-card deck would therefore require 
100 RAD sectors (seven tracks). If G = 1 and F = 110, the 
file size is computed using the granule size in word 3. 

If this is a random file and G = 0, then the logical record 
size is actually the FORTRAN random I/O logical record 
size and the granule size is equal to either the physical 

48 Service Routines 

sector size for temporary files, or to the granule size defined 
at file ADD time for permanent files. 

For unblocked records, the total area in sectors equals the 
number of records requested multiplied by the number of 
sectors requi red for each record. 

Return is to the location in the L register. The B register is 
restored. The A register contains status information on the 
return, as follows: 

A Register 

o 

2 

3 

4 

5 

Meaning 

Operation successful. 

Calling sequence error. Logical record 
size is not an even number or 0 records 
requested. 

Operational label invalid (foreground) 
or no spare entry in operational label 
table. 

No more device-file numbers for the 
RAD. 

RAD overflow (files too large). 

If K = 1, attempted to define pre­
viously defined file using inconsistent 
parameters. 

M:DEFINE FUNCTIONS 

For the specified temporary fi Ie, the appropriate size is 
allocated from the pool of temporary file space if such space 
is available. An unused device-file number is then initial­
ized with the boundary points of this RAD file. All subse­
quent references to this file (until closed by a call to 
M:TERM, M:ABORT, or M:CLOSE) will refer to the allo­
cated area. The file is set to the "rewound" condition, if 
it is a sequential fi Ie. 

If the operational label is already assigned, no error status 
is returned if it is assigned to a background RAD file. If 
K = 1, the address of the FORTRAN Associated Variable 
from the call must be the same as the one for the fi Ie. 

Note: M:DEFINE uses locations 1-3 (of the calling pro­
gram's floating accumulator) for temporary storage. 

M:ASSIGN (Assign RAD Files) 

M:ASSIGN performs equivalence between an operational 
label or FORTRAN device unit number, and 

1. A RAD area. 

2. A file name within a RAD area. 

3. A device-file number. 

4. Another operational label or device unit number. 



The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:ASSIGN 

ADRLST is a pointer to an argument list of two to eight 
words, as follows: 

word 0 

o D 

o 2 3 4 12 13 15 

where 

TV =00 
label. 

if the label is to be assigned to another 

TY = 01 if the label is to be assigned to a device-
file number. 

TY = 10 if the label is to be assigned to a RAD 
area. 

TY = 11 if the label is to be assigned to a fi Ie 
within a RAD area. 

F=O if the label is a background operational label. 

F = 1 if the label is a foreground operational label. 

A = 1 if the two-letter area mnemonic is contained 

D= 

in word 3; otherwise, D will specify the area. If 
A is set, D will be ignored. A must always be set 
for areas other than SP, SD, SL, UP, UD, UL, BT, 
and CPo 

directory to be used: 

000 Checkpoint area (area on·ly) 

001 System Processor area 

010 System Library area 

011 System Data area 

100 Background Temp area (area only) 

101 User Processor area 

110 User Library area 

111 User Data area 

No named files may exist in either the Checkpoint or Back­
ground Temp areas. D is ignored for TY = 00 or 01. 

word 1 

oplb (1) 

o 15 

where oplb (1) is the operational label or device unit to be 
assigned. 

word 2 

opbl (2), DFN, or buffer address 

o 15 

where 

oplb (2) if present, indicates that oplb (1) will be 
assigned to the device-file number that oplb (2) is 
currently assigned to. 

DFN if present, is the device-file number that 
oplb (1) will be assigned to. 

buffer address is the first word address of a buffer 
(equal to one blocking buffer in length) that wi II 
be used by M:ASSIG N as temporary storage for the 
appropriate RAD area dictionary. This is mean­
ingful only for TY = 11. 

word 3 

Cl or A 1 C2 or A2 

o 7 8 15 

If A (of first word of argument list) = 1, word 3 contains 
the two-letter area mnemonic, Aland A2; otherwise, 
word 3 contains the first two characters of the file name, 
as continued below: 

word 3 + A 

C1 C2 

o 7 8 15 

word 6+ A 

C7 C8 

o 7 8 15 

Cl-CB, if present, is the name of the file to which oplb (1) 
is to be assigned. That is, this fi Ie on the RAD is to be 
linked to an unassigned RAD device-file number to which 
oplb (1) is, in turn, assigned. This is meaningful only for 
TY=l1. 

Service Routines 49 



Return is to the location in the L register. The B register is 
restored. The A register contains status information on the 
return as follows: 

A register Meaning 

o Successful operation. 

Mixed oplbs or device-file numbers 
(foreground to background or vice 
versa). 

2 Invalid oplb (2) or DFN. 

3 

4 

5 

6 

No spare entries in oplb or DFN tables. 

File name not found in designated. 
directory. 

RAD area not allocated. 

Illegitimate RAD fi Ie format. 

When the A register == 0, the X register will contain the 
standard record size of this device. 

M:ASSIGN FUNCTIONS 

M:ASSIGN may be called to make any of four types of 
assignments, according to the setting of TY, as follows: 

TY == 00 oplb (1) is assigned to the DFN to which 
oplb (2) is currently assigned. Oplb (2) must be 
the same mode (foreground or background) as 
oplb (1) (error return A == 1). A background pro­
gram cannot assign foreground oplbs (error return 
A == 1). 

TY == 01 oplb (1) is assigned to the specified DFN. 
DFN must be legal, must not be a RAD DFN, and 
may not be foreground if opl b (l) is background. 

TY = 10 or 11 oplb (1) is assigned to a currently 
unused RAD DFN, which in turn is linked via the 
RAD dictionaries to a fj Ie on the RAD. This RAD 
file may be either an entire RAD area (e.g., sys­
tem processor) for TY = 10, or an individual file 
within an area (e. g., XSYMBOL) for TV == 11. 
The RAD area must have been allocated at SYSGEN 
(error return A == 5). The buffer address (TY == 11 
only) must be in the background if the call ing pro­
gram is a background program. 

If there are no errors, the assign wi II take place regardless 
of the prior status of oplb (1). For TY == 10 and 11, sequen­
tial RAD fi les are rewound (fi Ie pointer is set to BOT). For 
TV = 00 and 01, the fi Ie position is unchanged. 

M:RES (Temporary Storage Allocation Without Transfer) 

M:RES a I locates storage ina temporary stack, saves the 
previous value of B, and sets B to the first word address of 

50 Service Routines 

temporary area be i ng a II ocated. The ca II i ng sequence for 
dynamic allocation of storage is 

RCPYI P, T 

B *$+3 

DATA n 

DATA o 

ADRL M:RES 

where n is the number of cells to be reserved. 

T must point to the background if it is a background 
program. 

A TS abort wi II occur if more temporary storage is requested 
than is avai lable. 

The call ing sequence for nondynamic allocation of storage 
is 

RCPYI P,T 

B *$+3 

DATA n 

ADRL TEMP 

ADRL M:RES 

where TEMP is the address of n reserved locations at the end 
of the calling program. This area must not contain any code 
or literals. 

Upon return, the B register contains the pointer to the new 
temporary storage stack. Locations 0 and 1 relative to the 
base register are used by the storage a lIocation routines and 
may not be used by other routines. Location 2 relative to 
the base (the return address for M:POP) is set to M:ABORT. 

The calling program can set up its own exit through M:POP 
via the following. 

LDA ==RETURN 

STA 2,,1 

The L and X registers are unaffected. 

M:POP (Temporary Storage Release Routine) 

A call to M:POP is made to release the current TEMP stor­
age stack (pointed to by the current value in the B register), 
restore the previous value to B, and return to the location 
specified in TEMP+ 2. 



If the temporary storage was allocated by M:RES, the call 
must set up a return in TEMP+ 2. The calling sequence is 

LDA 

STA 

B 

=RETURN 

2,,1 

M:POP 

where RETURN is the location to which return w;1I be made 
after the stack is released. 

Return is to the address specified in location 2, relative to 
the beginning of the stack being released. The location in 
the L register and the return address must be in the back­
ground area if return is to a background program. On re­
turn, B contains its previous value before the RES-POP 
sequence. Assume return is made to location R; L is set to 
the value R + 1. 

M:OPFILE (Convert Operational Label to Device-Fi Ie 
Number) 

M:OPFILE determines the fi Ie to which a foreground or 
background operational label is assigned. The call ing 
sequence is 

LDA TYPE 

LDX ADRLST 

RCPYI P,L 

B M:OPFILE 

where 

TYPE is the mode of the operational label; nega-
tive for foreground, positive for background. 

ADRLST is a pointer to the operational label. 

Return is to the location in the L register. The B register 
is saved and restored. The status is contained in the E reg­
ister as follows: 

E = negative if label is not found 

E = positive if label is found 

If E is positive, the following information is provided. 

Register 

X 

E 

A 

Contents 

Device-fi Ie number 

IOCT entry address 
t 

Operational label table entryt 

Note: This routine is used primari Iy by the RBM and certain 
processors. It wi II seldom be needed by user programs. 

t See the chapter on SYSGE N for a di scussi on of the I/O 
Control Table and the Operational Label Table. 

M:RSVP (Reserve or Release Peripherals) 

M:RSVP reserves a peripheral device for foreground use 
only, until the foreground voluntarily releases the device. 

LDX ADRLST 

RCPYI P,L 

B M:RSVP 

ADRLST is the pointer to the argument list, which consists 
of three consecutive words either in the user's program or 
in a temporary stack. This argument list appears as follows: 

word 0 

Device number 

o 2 3 4 8 15 

where 

F = 1 if request is II reserve for foreground". 

F :::: 0 if request is II release to background" . 

U = 1 if request is for an unconditional reserve, 
where operator intervention is not required. 

U = 0 if request is for a conditional reserve, where 
operator intervention is required. 

R :::: 1 if a receiver is to be entered when the con-
ditional reserve is completed (only meaningful if 
U = 0). 

R :::: 0 if no such receiver is to be used. 

T :::: 0 if a device type is not specified. 

T :::: 1 if a device type is specified (used to distin-
guish KP40 from PT40). 

word 1 

Reserve Complete Receiver (optional) 

o 15 

A Reserve Complete Receiver should be used like an AIO 
Receiver; namely, after the request has been acknowledged, 
the foreground program should release control by a call to 
M:EXIT and should regain control when the reserve has 
been effected through the specified receiver address. This 
receiver is entered at the priority level of the RBM Control 
Task and should return to the location contained in the 
L register. If R :::: 0, word 1 contains the device type (see 
word 2). 

word 2 

Device type (e. g., KP) (optional) 

o 15 

Service Routines 51 



Return is always to the location contained in the L register. 
The A register contains status as follows: 

A = 0 if the request is acknowledged. If F = 1 
and U = 1 (i. e., unconditional reserve), the de­
vice is reserved for foreground use. If F = 00. e., 
release), the device has been released for back­
ground use. 

A = 1 if the request is acknowledged but operator 
intervention is required. If a Reserve Complete 
Receiver is specified, it is entered when the oper­
ator effects the reserve. This is the normal re­
sponse to a conditional request to reserve a 
peripheral device (F = 1, U = 0). 

A = 2 if the device is not associated with a back-
ground fi Ie. 

A = -1 if the request cannot be honored because a 
prior request to reserve this device has been made, 
if the request is to release an unreserved device, 
or if the reserve peripheral table (RSVTBL) is full. 
(See" Limitations" below.) 

M:RSVP FUNCTIONS 

Reserve. If the request is for an unconditional reserve, a 
message is output to inform the operator of the foreground 
reserve action (e. g., !! FG RESERVE, LP02). 

If the request is for a conditional reserve, a message is out­
put to inform the operator of the request (e. g., !! FG 
REQUEST, CR03). The operator should then prepare that 
device for the pending foreground operation, and then re­
serve the device by an unsol icited key-in of FR (foreground 
reserve; for example, FR CR03). This will reserve the de­
vice for foreground use. A message is nowoutputtoacknow­
ledge the reserve action (e. g., !! FG RESERVE, CR03). If 
the Reserve Complete Receiver is specified, it wi II be 
entered at this point. 

Release. The peripheral device can be released for back­
ground use by a call to M:RSYP to release the device. The 
peripheral device specified wi II now be avai lable for back­
ground use. A message wi II be output to inform the operator 
of the release action (e. g., !! BK RELEASE, CR03). The 
peripheral device can also be released by an unsolicited 
key-in of BR (background release). Unsolicited key-ins to 
reserve and release peripheral devices are described in 
Chapter 3. 

Limitations. The reserve peripheral table will accommo­
date five requests at a time, which is felt to be a real istic 
limitation. 

M:DOW (Diagnostic Output Writer) 

Currently, multitask use of the same file may result in a 
conflict situation whereby a task is unable to output a 

52 Service Routines 

message because a lower priority task has control of the file. 
M:DOW allows the use of an active fj Ie for the purpose of 
outputting alarms. The calli ng sequence is 

LDX ADRLST 

RCPYI P,L 

B M:DOW 

ADRLST is a pointer to the four-word argument list as 
shown below: 

word 0 

o 1 15 

where 

F = 1 if a device file number is specified. 

F = 0 if an operational label or device unit number 
is specified. 

word 1 

Operational label or file number 

o 15 

word 2 

Address of buffer containing data 

o 15 

word 3 

Number of bytes to transmit 

o 15 

Return is to the location in the L register. The B reg­
ister is always saved. The status is returned in the E, 
A, and X registers. The method of returning and the 
status returned are the same as described under M:READ/ 
M:WRITE. 

M:DOW FUNCTIONS 

If the fi Ie to be used is currently active, M:DOW will 
wait until end-action-pending and will then clear the 
active fi Ie and the end-action-pending flags. The call 
will be translated to an equivalent call to M:WRITE which 
wi II output the alarm. The buffer data are assumed to 
be EBCDIC. 



M:COC (Character-Oriented Communications) 

M:COC performs input, output, and control operations on 
a specific communication line. The calling sequence is 

LDX ADRLST Pointer to the argument list 

RCPYI P,L Set the return address 

B M:COC Branch to the routine 

ADRLST is a pointer to the argument list, as follows: 

word 0 I Order 

word 1 E I Line number I Prompt character 

word 2 Buffer address 

word 3 I Byte count 

word 4 End-of-message receiver 

o 78 11 12 

where 

Order (bits 12-15) is as follows: 

Order Operation 

o 

2 

3 

4 

5 

6 

7 

8 

Check status of line 

W · t b d' . nte n ytes, no e Itlng 

Read n t bytes, no edi ti ng 

Send break character (long-space) 

Check previous read or write 

Write message of up to nt bytes, edited 

Read message of up to n t bytes, ed i ted 

Disconnect line (turn off data set) 

Connect line 

E is 1 if an end-of-message (EOM) receiver is 
specified; is 0 if no EOM receiver is specified. 

15 

Prompt character is meaningful for orders 6 and 8. 

t 

For order 6, it is the character (EBCDIC) to be 
output before input is requested. This can be used 
to si gnal the operator that input can now begi n. 
For order 8, it specifies the mode in which all 

0< n ~ 255. 

communication will be handled on this line until 
it is disconnected, and it has the following form: 

Bit Value Meaning 

8 Echo all input characters. 

0 Do not echo. 

9 Translate all input from 7-bit 
ANSCII to EBCDIC, and all 
output from EBCDIC to ANSCII. 

0 Do not translate any codes. 

10 Check pari ty on input and create 
parity on output (even parity). 

0 Ignore pari ty 

11-12 00 Device is Model 33/35 teletype. 

01 Device is Model 37 teletype. 

10 Device is keyboard/display. 

11 Device is foreign device, and no 
editing or translation will be 
performed (overrides setting of 
bits 9 and 10). 

EOM receiver is used like an AIO receiver. When 
an input or output message is completed, the ap­
propriate communications task wi II branch to the 
specified EOM receiver address, at the priority 
level of either the input or output external inter­
rupt, and will show the I ine number (of the line 
with the completed message) in the X register. 
The user program should save this status, trigger 
an appropriate user interrupt level, and return to 
the location in the L register. All operations are 
no-waitoperations; that is, the return is immediate 
upon initiating I/O or performing the connect or 
status checks. Thus, the EOM receiver is appl ica­
ble only for read (2 and 6), write (1 and 5), and 
send break (3) orders. EOM receivers are subject 
to the same restrictions and precautions as are AIO 
receivers. (See Chapter 5 for a more detailed 
discussion of AIO receivers.) 

Return is to the location specified in the L register. On re­
turn, the B register remains unchanged; and the E, A, and 
X registers are set as specified in Tables 11, 12, 13, and 14. 

The nine possible orders that can appear in the argument 
list, and the operation for each, are described below: 

o Check status of line. This operation allows the 
user to check both the logical condition of the line 
(which must be one of the unique codes in Table 14) 
and the physical condition of the line (which is 
reported just as it is received from the hardware). 
Only the line number is needed in the argument list. 

Service Routines 53 



Table 11. Status Returns for M:COC 

Operation Major Status Action 

All operations line no. not valid Return 
immediately 

Calling seq. err. 

line has disconnected 

Inval id line status 

Initiate read li ne is busy Return 
or write immediately 

Successfully initiated In i ti ate and 
return 

Check previous li ne is busy Return 
input or output immediately 

Operation complete Return 

Connect or Successful connection Connect and 
disconnect return 

Check status Connected line Test and 
return 

Table 12. Completion Codes 

A Register Value Meaning 

0 Successful completion 

1 Parity error on some byte read 

2 Break condition exists 

T abl e 13. Li ne Status 

E Register Bits Meaning 

0-11 Not used 

12-13 Receiver status (0 and C bits) 

14-15 Transmitter status (0 and C bits) 

Table 14. Line Mode 

A Register Value Meaning 

0 Line is disconnected 

1 Output mode 

2 Output prompt character and then 
switch to input 

3 Input mode 

4 Inactive mode 

5 Message complete 

54 Service Routines 

E A X 

-1 8 Line no. 

-1 4 Line no. 

-1 2 Line no. 

-1 1 Line no. 

0 -1 Line no. 

0 0 Line no. 

0 -1 Line no. 

0 Completion Byte count 
code 

0 0 line no. 

line Line mode line no. 
status 

Write n bytes, no editing. If the byte count is 
odd, the first output transmission takes place 
from right of the first word, and the left of the 
first word is ignored. No end-of-message codes 
are added at the end of the message, and no 
trailing blanks or null characters are stripped 
off. Parity generation and translation from EBCDIC 
to ANSCII are under the control of the specified 
options for this line. 

2 Read n bytes, no editing. A read operation is 
initiated, with no editing for cancel or character­
delete operations, but with a search for any 
ANSCII control character. Input is terminated 
if any control character is found or if the speci­
fied byte count is exhausted. If any input bytes 
were received before this read request was given, 
these bytes are thrown away. The end-of-message 
character always remains in the user's input buf­
fer, translated to EBCDIC, if specified. The 
same comments about parity apply for the write 
operati ons. 

3 Send break character (long-space). If the line is 
in an inactive mode, the long-space is sent imme­
diately. If the line is in a write mode or a read 
mode, the operation is terminated and the long­
space is then sent. In the argument list, only the 
line number is meaningful. 



4 Check previous read or write. This operation is 
required for all read and write operations, whether 
or not an EOM receiver is specified. The user 
buffer remains busy until the previous operation is 
checked. The line is then set inactive and becomes 
ready for subsequent use. This is the only way to 
determine break conditions. The return status is 
shown in Tables 1 1 and 12. Only the line number 
is meaningful in the argument list. 

5 Write message of up to n bytes, edited. This op­
erates like the write operation without editing 
except (1) that trailing blanks and trailing null 
characters are removed and (2) that appropriate 
control characters are added as the final charac­
ters of the message. 

6 Read message of up to n bytes, edited. This oper­
ates like the read without editing, except that 
ignore, backspace, and cancel operations are in 
effect for the current line; when any of these 
special characters are encountered, the proper 
effect takes place on the line and the user's buffer 
is modified accordingly. (Note that the backspace 
is an editing, or destructive, backspace; that is, the 
previous character is deleted from the user's buf­
fer.) The prompt character, if nonzero, is output 
prior to the read operation. (See Table 15 for a 
summary of editing operations.) 

7 Disconnect I ine. The data set is disconnected, but 
the send and receive modules remain connected. 
The logical I ine mode is cleared (i. e. , disconnected). 

8 Connect line. The logical line mode is set to 
"inactive" and the options are initialized. The 
connect line is assumed to be a dedicated line or 
a line that has already dialed-in. A user program 
can poll the lines with a "check status" order to 
determine when a line has connected. 

M:COC FUNCTION 

Once the RCOC initialization routine has prepared the 
communication equipment, the status of each line is IIdis­
connected". All input and output are rejected until the 
line is connected. If the line is dedicated, only a II con-
nect line" call to M:COC is required. If the line must be 
dialed-in (using M:IOEX), the dial operation must precede 
the IIconnect line ll call to M:COC. The connect sets the 
I ine status to II inactive ll (i. e. , avai lable for I/O transfers). 
I/O operations are initialized sequentially, and when com­
pleted, the line status is set to II message complete ll

• At 
this point the line is still busy and can be cleared (i.e., 
set to lIinactive") only by a call to M:COC to check the 
status of the previous operation (order 4). The call IIcheck 
operation" is not required after a check status, a connect 
or a disconnect operation. A disconnect operation sets the 
line status to IIdisconnected ll

, and the line must be recon­
nected before it can be used again (see Appendix F). 

Table 15. Summary of Editing Operations 

Codes Used 
Operation 

33/35 37 Character Display 

User-generated end-of-message CR or LF or BREAK NL or BREAK N L or INTERRUPT 
character on input, edited 

System-generated end-of- LF or CR (opposite of None for NL; None for NL; NL for INTERRUPT 
message character on input user input); NL for BREAK 

CR and LF on BREAK 

Attention code; used to BREAK BREAK INTERRUPT 
terminate input or output 

Ignore thi s character, except RUBOUT or DEL or DEL or 
after ESC ESC,SPACE ESC,SPACE ESC,SPACE 

System-generated characters CR, LF,RUBOUT NL,RUBOUT NL,5 - NULL 
on output at end-of-message 

Delete previous character ESC,RUBOUT ESC,DELETE ESC, DELETE or EM 
(echo-) (echo \) operation 

Delete current line ESC,X ESC,X ESC,X or CR,CAN 

Service Routines 55 



5. I/O OPERATIONS 

BYTE-ORIENTED SYSTEM 

The Mon i tor performs a II I/O serv ices for the byte­
oriented I/O system. This includes: 

• Logical-to-physical device equivalencing. 

• Initiating I/O requests. 

• Standard error checking and recovery (optional). 

• Software checking of background and Monitor. 

• Software checking of background requests to preserve 
protection of foreground and Monitor. 

• Optionally generating device order bytes for device­
independent operations. 

• Accepting user-generated 10CDs and device order 
bytes to provide complete control for a user's 
program. 

• Using data chaining for foreground programs performing 
scatter-read or gather-write operations. 

• Reading or punching cards in either BCD or 
EBCDIC. 

• Positioning magnetic tapes and sequential RAD files. 

• Editing from paper tape or keyboard/printer. 

• All I/O interrupt handling. 

• Managing both temporary and permanent RAD 
files. 

• Limiting channel active time for I/O transfers. 

I/O INITIATION 

Whenever a task needs to initiate an I/O operation, it 
calls on the appropriate Monitor I/O routine (see Chap­
ter 4 for complete calling sequences). These Monitor 
I/O routines are reentrant, so that a higher priority 
task may interrupt and request I/O during the initiation 
of a lower-priority task, in which case the low-priority 
task is suspended and the higher-priority task satisfied 
first. 

A real-time foreground program may acquire control of 
a mu Itidevice controller from background users at the 
completion of any current I/O. This technique is used 
in.place of queuing. All Monitor I/O initiation is made 
at the priority of the calling task, with background tasks 
having the lowest priority. 

56 I/O Operations 

The channel time I imits imposed by the Monitor on standard 
devices are as follows: 

Maximum Allowable Channel 
Device Type Active Time (seconds) 

KP 255 

LP 3 

CR 3 

CP 3 

M9 10 

PT 820 

BR 3 

BP 3 

M7 10 

RD 7202,7204 3 

RD 7242 4 

PL Not imposed 

END ACTION 

The chapter on Operator Communication specifies the pos­
sible error messages. Generally, standard error recovery 
takes place when the I/O is checked for completion rather 
than on the I/O interrupt. This means that error recovery 
for the background will be processed at the priority level 
of the background rather than at the I/O interrupt priority 
level. However, there is a provision for the real-time fore­
ground user to specify an end-action routine to be called 
when the Monitor answers the I/O interrupt. This is the 
AIO Receiver address in the I/o calling sequence, and it 
is to be used only when more sophisticated end-action is 
requ i red or when a foreground task is to be restored to acti ve 
status at channel end. The routine is processed at the priority 
level of the I/O interrupt, so the processing should be of 
very short duration. Reentrancy in this routine is the user's 
responsibility. For example, this routine might consist of 
storing the I/O status information and then triggering a 
lower-level external interrupt through a Write Direct, where 
this lower-level task performs the actual processing. The 
end-action routine should then return to the task from which 
it originally came (by RCPY L, P). 

The form of the call to the AIO Receiver is 

LDA 

RCPYI 

B 

AIODSB 

P, L 

AIO Receiver address 

(device status byte 
from AIO in bits 0-7; 
device number in 
bits 8-15) 



The AIO Receiver routine should return to the location 
contained in the L register on the entry. All registers are 
assumed to be volati Ie, which means that they need not be 
saved and restored to their former contents. 

The purpose of the AIO Receiver technique is to allow a 
real-time user program to be informed by RBM when chan­
nel end occurs on a particular I/o operation.' It is used 
instead of I/o queueing by the Monitor. Typically a fore­
ground program wishing to maximize I/o and computation 
overlap wi II issue an I/O request wi th the no-wa it opti on 
and with an AIO Receiver address specified. When the 
I/O is successfully initiated, the foreground task exits from 
the active state (by a ca II to M: EXIT) and is restored to 
active status at channel end by a Write Direct to trigger 
the interrupt level from the AIO Receiver. The foreground 
program must then return to the Monitor I/O routine with 
the "check II option to complete the end action on the 
file. See Chapter 6 for a more detailed discussion of 
AIO Receivers. 

Note: For transfers invoking blocked fi les where no 
I/O is actua IIy performed, the X regi ster wi II 
contain -1 to indicate that the AIO receiver 
wi II not be entered. 

LOGICAL/PHYSICAL DEVICE EQUIVALENCE 

When writing a foreground or background program in 
either Symbol or FORTRAN, the user is not required to 
know the actual physical device number that wi II be 
used in the input/output operation. Two ways are pro­
vided under RBM to help the user select the input/output 
device on a logical rather than physical basis. 

The first method is the direct logical reference. The user 
can specify a device-file number in his calling parameters 
to the input/output routines, and RBM will translate this 
into an actual physical device number. There may be 
several device-file numbers pointing to the same physical 
device; however, only one device-file number is generally 
needed per device per active task in the system. Each 
device-fi Ie number can be used by only one task at a time. 
This is a necessary restriction since the I/O status is saved 
in the device-file number table in the RBMand independent 
operation by several tasks on the same device would cause 
invalid status from the separate tas~ using it. 

The second method is device referencing through indirect 
logical reference. This method first assigns a device unit 
number or an operational label to a device-file number, 
which in turn is assigned to a physical device number. The 
equivalence of operational labels or device unit numbers 
and the device-file numbers is set at System Generation 
time for certain standard devices, as shown in Tables 2 
and 16. The standard assignments may be changed later by 
use of !ASSIGN or !DEFINE control commands. 

Table 16. Standard Device Unit Numbers 

Device Unit 
Number Standard Assignment 

101 Keyboard/printer input 

102 Keyboard/printer output 

103 Paper tape reader 

104 Paper tape punch 

105 Card reader 

106 Card punch 

108 Line printer 

Table 2 shows the standard background operationa I labels. 
The devices and functions shown indicate how the standard 
processors use these labels. Since each I/O call must specify 
a byte count, a user program can read any number of bytes 
from SI (if SI is magnetic tape, for example). The labels 
are merely a name. There is no restriction on the record 
size except as imposed by the peripheral devices. 

RAD FILES 

The two types of RAD fi les avai lable are sequential fi les 
and random fi les. A sequential fi Ie may be used I ike a 
single-fi Ie magnetic tape, whereas a random fi Ie may be 
used I ike a truly direct-access 'device. The capabi I ities 
and restrictions of each type of file are described below. 

SEQUENTIAL FILES 

1. Sequential RAD fi les are avai lable to foreground and 
background tasks. 

2. Sequential RAD files are avai lable to routines M:READ, 
M:WRITE, and M:CTRL, but not to M:IOEX. 

3. Sequential RAD fi les can be blocked (with more than 
one logical record per sector) if the logical record size 
is less than or equal to hal f the RAD sector size. The 
Monitor I/O routines do the blocking and 
unb locki ng. 

4. Sequential RAD fi les can be compressed (with blanks 
removed) if they are EBCDIC data. The Monitor I/O 
routines do the compressing and expanding but do not 
check for binary data. Compressed records are always 
blocked and of variable size; therefore the logica I 
record size has no meaning except when allocating 
the file. 

Logical/Physical Device Equivalence/RAD Files 57 



5. Logical records may be less than, equal to, or greater 
than the RAD sector size. Unblocked records always 
start on a sector boundary. Therefore, if a logica I 
record is less than a RAD sector and is unblocked, the 
remaining bytes of the sector wi II be ignored. If a 
logical record is greater than a sector, it will occupy 
an integral number of physical sectors and the remain­
ing bytes of the last sector will be ignored. 

6. BOT (beginning-of-tape) is defined as the logical load­
point and equals the first sector of the fi Ie. EOT is de­
fined as the logical end-of-tape and equals the last 
sector +1 of the file. EOF (end-of-fi Ie) is defined as 
the logical file mark (which mayor may not exist). 

7. As on magnetic tape, once a logical record or file mark 
is written on a fi Ie, any records or fi lemarks previously 
written beyond that point are unpredictable. 

8. Sequential RAD fi les (except compressed fj les) can be 
spaced forward or backward by logical records. 

9. Sequential RAD fi les can be positioned by !REWIND, 
!FBACK, and !FSKIP commands. 

10. Sequential RAD fj les can request an Ala Receiver at 
channel end for physical I/o transfers. When oper­
ations involve only logical I/O transfers, the AIO 
Receiver wi II be ignored. A flag will be set indicating 
whether the AIO Receiver is to be acknowledged or 
not, (see M:READ/M:WRITE status returns). 

11. RAD transfers must consist of an even number of 
bytes. 

12. Operational labels can be equated to permanent files 
on the RAD, or be allocated from avai lable temporary 
RAD space. This can be accomplished either through 
control cards (for standard assignments) or through 
Monitor service calls at execution time for nonstandard 
assignments. 

13. When the operational label is defined or assigned 
to a permanent fi Ie, it is automatically positioned 
at the BOT. 

14. As on magnetic tape, the only record that can be 
written at the EOT is the logica I fi Ie mark. 

RANDOM FILES 

1. Random files are avai lable to foreground and back­
ground jobs. 

58 RAD Files 

2. Random files are available to routines M:READ and 
M:WRITE, but not to M:CTRL or M:IOEX. 

3. All I/O transfers start on a granule boundary within 
a file. These granule boundaries are addressed as a 
number that represents the disp lacement of the 
granule from the start of the file, beginning with 
zero. A granule boundary always begins on a 
sector boundary but need not end on one (see dis­
cussion of granules below). 

4. All positioning commands such as !REWIND, !FSKIP, 
!WRITE EOF, etc., are meaningless. 

5. The transfer of any number of bytes (up to a maximum 
of 65, 536) may be requested, provided that the byte 
count is an even number and the transfer will not ex­
tend past the fi Ie boundary. 

6. Operational labels can be equated to permanent files 
on the RAD or can be allocated from available tem­
porary RAD space. This can be accomplished either 
through control commands (for standard assignments) or 
through Monitor service calls at execution time for 
nonstandard assignments. 

7. When a random fi Ie is defined, the user may specify 
a FORTRAN logical record size and a pointer to the 
word where the last referenced FORTRAN logica I 
record +1 is stored. This information, although un­
used by the Monitor, is stored in the fj Ie and may be 
requested by executing programs or processors (such as 
the FORTRAN compiler), if necessary. 

8. Random fi les cannot be blocked or compressed, unless 
the user program performs its own blocking/deblocking 
or compression/decompression. 

9. BOT is defined as the first sector of the file. EOT is 
defined as the last sector +1 of the file. EOF has no 
meaning in random fi les except for mapping purposes. 

10. Requests for a foreground AIO Receiver at channel end 
will always be acknowledged. 

GRANULES 

Granules are the minimum physical amount of data that are 
transferred in a read or write operation from or to random 



RAD/disk pack files. While a granule is usually synonymous 
with a sector on a device, it may be defined (on a file 
basis) to be equivalent to any of the following: 

• a partial sector 

• one sector 

• severa I sectors 

A granule always begins on a sector boundary but need 
not end on such a boundary. For example, to make the 
7204 RAD and the 7242 disk pack transfers equivalent, a 
granule can be defined to be 1024 bytes; this is then one 
sector on the disk pack and two sectors plus a fraction of 
a sector on the 7204 RAD. 

RAD FILE MANAGEMENT 

RBM permits a I location of the RAD into the subsections 
shown in Figure 4. The exact bounds on these sections are 
computed from the size of required contents or selected by 
the user in accordance with the anticipated use of the 
system. In either case, the bounds are set during System 
Generation, and cannot be changed except by a new 
System Generation. RBM maintains directories for as many 
areas as the user specifies up to 15, plus: the System Li­
brary, System Processor area, and System Data area. RBM 
also maintains control of the checkpoint area. The back­
ground temporary space is allocated from control command 
inputs or from calls to M:DEFIN E as requested. 

Areas need not be allocated contiguously (RAD tracks may 
be skipped between areas), and can be distributed over 
more than one RAD. However, each area must exist en­
tirely on a single RAD. If there is more than one RAD on 
the system, one will be designated as the RBM System RAD, 
which will receive any default areas. Any RAD with sec­
tor 0 avai lable wi II receive a bootstrap in that area. 

RBM Bootstrap loader 

System Processor area 

System Library area 

System Data area 

RBMGO RBMAl 
RBMOV RBMS2 
RBMPMD RBMSYM 
RBMID 

User Processor area 

User Li brary area 

User Data area 

Checkpo i nt area 

Background temporary storage 

Xn area 

Dn area 

Figure 4. RAD Allocation 

RAD File Management 59 



6. REAL-TIME PROGRAMMING 

FOREGROUND PROGRAMS 

Under the Sigma 2/3 RBM, a foreground program is one that 
operates in protected memory, utilizes foreground opera­
tional labels or device unit numbers, and has access to 
privileged Sigma 2/3 instructions. It is protected from any 
background interference through an integrated hardware/ 
software protection scheme. A foreground program may be 
classified as either a resident foreground program, a semi­
resident foreground program, or a nonresident foreground 
program, and it it important that this distinction be 
understood. 

RESIDENT FOREGROUND PROGRAM 

Foreground programs are defined as resident through the 
RAD Editor when their files are created on the user pro­
cessor area of the RAD. They are loaded into core from 
the RAD whenever the RBM system is booted, and are either 
automatically armed, enabled and (optionally) triggered, 
or they initialize themselves through their own initializa­
tion routines. Once loaded into core for execution, resi­
dent foreground programs remain resident until the RBM 
system is again booted from the RAD. 

SEMIRESIDENT FOREGROUND PROGRAM 

Semiresident foreground programs are normally not in core 
memory. They are not read into core when the RBM system 
is booted but must be called in explicitly when needed. 
Semiresident foreground programs, when loaded, reside in 
the resident foreground area. The user must schedule the 
loading of semiresident foreground programs because the 
Monitor provides no protection against overlay or over­
loading. When loaded, they may be automatically armed, 
enabled and (optionally) triggered, or they may initialize 
themselves through their own initial ization routines. 

NONRESIDENT FOREGROUND PROGRAMS 

Nonresident foreground programs are normally not in core 
memory. They are not read into core when the RBM system 
is booted but must be called in explicitly when needed. 
Nonresident foreground programs, when loaded, reside in 
the nonresident foreground area, and the area is then consid­
ered "active" and is not avai lable for subsequent use by other 
programs (including the Monitor) unti I the program occupying 
this area releases it by "unloading". This feature is useful 
when a system has several nonresident foreground programs 
that have a resource allocation problem or are connected to 
the same interrupt level. The Iv\onitor wi II control access 
to the nonresident foreground area, thus providing protec­
tion against multiple loading of these conflicting programs. 

If nonresident programs are to be used, at least six cells 
must be allocated for the nonresident foreground area of 
core. If allocated, the nonresident foreground area is 

60 Real-Time Programming 

adjacent to the background. If a nonresident foreground 
program is to be loaded and the length of the longest path 
(including COMMON) exceeds the size of the nonresident 
foreground area, the background is automatically check­
pointed to allow the program to extend to the background. 
The background remains checkpointed until the nonresident 
foreground program unloads by a call to M:LOAD. When 
loaded, nonresident foreground programs may be automati­
ca"yarmed, enabled and (optionally) triggered; or they 
may initialize themselves through their own initialization 
routines. 

MONITOR TASKS 

The relative priorities of the separate Monitor tasks are 
given in descending order below: 

Highest Counters (optional) 

Power On Task 

Power Off Task 

Memory Parity Error Task 

Protection Violation Task 

Multiply Exception Task (optional) 

Divide Exception Task (optional) 

Input/Output Task 

Control Panel Task 

Counters = 0 (optional) 

Real-Time Task(s), if any lower than I/O 

RBM Control Task (lowest hardware level) 

Background (lower than all hardware levels) 

Although the tasks are not reentrant, they are serially 
reusable; that is, as soon as a task finishes processing one 
request, it can immediately process another. For example, 
I/O interrupts are processed one at a time, with the highest 
priority device always processed first if several interrupts 
are waiting, but as soon as the processing of one interrupt 
request has been completed, another request for a separate 
device can be processed. 

POWER ON TASK 

The Power On Task performs the following operations: 

• Waits for acceptable RAD status. 

• Loads and I inks and branches to power-on overlay. 



• 

• 

• 

• 

Disarms all external and internal interrupt levels, 
then arms and enables all interrupt levels. 

Interrogates foreground mai Ibox X'C4' for a power-on 
receiver, and if one is specified, links and branches 
to it. An override task is one that services an inter­
rupt generated at the override group level (dedicated 
interrupt locations X'l00' to X'105'). The receiver for 
such a task may be specified by loading a resident task 
into foreground. This task must have a small initiali­
zati on routi ne that sets the correspond i ng foreground 
mai Ibox to point to the real-time portion of the re­
ceiver. The various receiver mai Ibox addresses and 
their corresponding functions are as follows: 

Address 

X'C3' 
X'C4' 
X'C5' 
X'C6' 

Receiver Function 

Power Off 
Power On 
Integral lOP Timeout 
Watchdog Timeout 

Scans the Channel Status Table and, for any active 
I/o channel, sets Unusual End and Memory Parity Error 
flags and simulates an I/o interrupt. 

Retriggers any task that has its TCB address in the 
TCB chain. 

• Restores protection registers. 

• Triggers RBM to write the message! !POWER ON. 

• Reloads the overlay region. 

• Switches the dedicated interrupt location for any 
task that requires retriggering, so that the interrupt 
branches to a separate Power On Task. This separate 
Power On Task then branches to the point at which the 
task (at this interrupt level) was interrupted and subse­
quently switches the dedicated interrupt location back 
to its proper value. 

• Exits the power failure task (i. e., the Power Off 
Task). 

POWER OFF TAS~ 

The Power Off Task performs the follow i ng operati ons: 

• Saves the internal interrupt status. 

• Saves context via a call to M:SAVE. 

• Scans the Channel Status Table and issues an HIO to 
any channel flagged active and saves the device status 
byte and the even and odd channel register contents in 
the Fi Ie Control Table. 

• Saves the RAD address of the RAD that has the system 
processor (S P) area. 

• Interrogates foreground mai Ibox X'C3 1 for a power-off 
receiver. If one is specified, a branch is made to it; 
otherwise, the Power Off Task waits for the power-on 
interrupt. 

MACHINE FAULT TASK 

This task is responsible for examining memory parity errors 
and watchdog timeouts. If a memory parity error occurs 
whi Ie the background is active, the background program is 
aborted and the real-time foreground is not disturbed. The 
Machine Fault Task calls the reentrant Monitor routine 
M:ABORT which sets the flag for the S:ABORT subtask and 
triggers the RBM Control Task. S:ABORT then aborts the 
background and prints an error message. 

If a memory parity error occurs whi Ie a foreground task is 
active and if the number of foreground parity errors has not 
exceeded the specified limit, the Machine Fault Task sets 
a flag to cause the RBM Control Task to output the fol­
lowing diagnostic: 

! !FG PARITY ERR, TCB=FFFF, LOC=FFFF, A=FFFF, 
X=FFFF, B=FFFF 

Processing continues from the point where the parity er­
ror occu rred. 

If a memory parity error occurs while a foreground task is 
active and if the number of foreground parity errors has 
exceeded the specified limit, the Machine Fault Task does 
the following: 

1. Disables the active task. 

2. Sets a flag to cause the RBM Control Task to output 
a diagnostic. 

3. Resets the foreground parity error counters. 

4. Exits and simultaneously forces the active task to 
terminate. 

The RBM Control Task outputs the following diagnostic: 

! !FG PARITY ERX, TCB=FFFF, LOC=FFFF, A=FFFF, 
X=FFFF, B=FFFF 

where ERX indicates that the task has been disabled and 
terminated. 

All tasks that do not use M:SAVE must set K:TCB correctly 
to guarantee proper recovery from a memory parity error. 

If an integral lOP watchdog timeout occurs, the Machine 
Fault Task interrogates foreground mai Ibox X'C5' for an 
integral lOP timeout receiver. If a receiver is specified, 
the Machine Fault Task links and branches to it; other­
wise, the Machine Fault Task enters the "wait" state. The 

Monitor Tasks 61 



overflow bit wi II be set, and the control panel interrupt 
will be ineffective in clearing this "wait". When this hap­
pens, a Customer Engineer should be notified immediately. 

If an external lOP watchdog timeout occurs (usually as the 
result of attempting direct I/O to an unrecognized device), 
the Machine Fault Task interrogates foreground mailbox 
XI C61 for a receiver. If a receiver is specified, the 
Machine Fault Task branches to it; otherwise the Machine 
Fault Task outputs the message 

! !MACH. FAULT; TCB=FFFF, LOC=FFFF, A=FFFF, 
X=FFFF, B=FFFF 

It then changes the program status to set the overflow and 
carry when it exits, and attempts to continue with the 
foreground task. If this interrupt occurs twice for the same 
task, the Machine Fault Task triggers RBM to write the 
following message: 

I !MACH. FAULXi TCB=FFFF, LOC=FFFF, A=FFFF, 
X=FFFF, B=FFFF 

It then disables and terminates the current foreground tasks. 

PROTECTION VlOLA110N TASK 

Any attempt by the background to modify the contents of 
protected memory, or to execute a privileged instruction, 
will cause the Protection Violation Task to abort the back­
ground program, using the same method as the Memory 
Parity Task. 

Unavai lable core is set "protected ". Write attempts to 
unavai lable core cause protection errors, and read attempts 
from unavai lable core cause parity errors. The abort code 
after a protection error shows the location causing the error 
if the error was an invalid store or a privileged instruction. 
An attempt by the background to branch to protected mem­
ory will cause an abort with the address of the location that 
was being branched to. Note that Monitor service routine 
calls actually cause a protection violation from the back­
ground. However, if the branch address and the return to 
the background are valid, the branch is permitted. 

The set mu Itiple precision mode instruction, RD XI 8l', does 
not cause a protection violation when multiple precision 
hardware is implemented. 

MUL11PLY/DIVIDE EXCEPTION TASKS 

These tasks simulate and subsequently execute a Multiply or 
Divide instruction for Sigma 2/3 computers not equipped with 
Multiply/Divide hardware. They are not reentrant, so all 
lower interrupts are locked out for the duration of the simu­
lation (approximately 250 to 300 CPU microseconds.) 

62 Scheduling Resident Foreground Tasks 

INPUT/OUTPUT TASK 

After an input/output interrupt, the Input/Output Task 
identifies the highest priority device with a pending 
interrupt. It then clears the channel activity status and 
sets the operational status byte count residue in the proper 
device-file status table, if the device is no longer opera­
ting. (The channel is not cleared for a zero-byte-count 
interrupt.) If a foreground Ala Receiver was specified (for 
a description of an Ala Receiver, see "I/O Operations" in 
Chapter 5), control is transferred to this receiver at the 
I/O priority level. It is expected that the Ala Receiver 
exit properly. 

To minimize interrupt inhibit time, the channel registers 
are loaded and the I/O initiating SIO is issued at the I/O 
interrupt priority level. Consequently, any task with a 
priority level higher than I/O must not use M:READ, 
M:WRITE, or M:IOEX to perform I/O, but may perform 
its own I/O without interrupts. 

When Clock 1 is employed (a SYSGEN option), M:READ/ 
M:WRITE operations are subject to a time limit. Clock 1 is 
used to ensure that no channel is active beyond a preset 
limit. If the limit is exceeded, an HIO is issued to the 
offending device and appropriate end action wi II be taken. 

Certain RAD I/O operations are subject to a minimum-seek 
algorithm. Under this algorithm, RAD seeks are not initi­
ated unti I the RAD is positioned within two sectors of the 
first sector to be read. This prevents low-priority tasks from 
denying RAD access to high-priority tasks. The algorithm 
applies to all Jlwait" requests (see description of M:READ 
and M:WRITE in Chapter 4). 

CONTROL PANEL TASK 

A Control Panel Interrupt causes the Control Panel Task to 
set a flag for the RBM Control Task, trigger the task, and 
then exit from the Control Panel Task (about 40 to 50 micro­
seconds of CPU time). The operator response is processed 
at the level of the RBM Control Task. 

R8M CONTROL TASK 

This task controls unsolicited key-ins and background oper­
ations. It is the only RBM task that actually performs input/ 
output and, therefore, is the on Iy task that requires tempor­
ary stack space for the reentrant RBM input/output routines. 

SCHEDULING RESIDENT FOREGROUND TASKS 

When several different programs and tasks are simulta­
nously located in core memory, scheduling is required for 



the orderly transfer of control from one task to another. Sched­
u ling takes place in accordance with the following rules: 

1. When no background or foreground task is active in 
the system, the Monitor enters the "idle II state unti I 
the operator directs the loading of a set of control 
commands from an input device. 

2. After a background program is loaded, the Monitor 
transfers control to the program by an exit sequence 
from the RBM Control Task. During execution of the 
background program (if the program is waiting for its 
own 1j0 to complete), there can be nothing else in 
execution in the system. That is, the Monitor makes 
no attempt to multiprogram to absorb idle time. If 
there is an armed and enabled resident foreground task 
in core, the foreground program may receive an inter­
rupt from some extern a I source. 

3. After entry, the interrupting task saves the contents of 
any registers it will alter and proceeds to carry out its 
function. The task may use either the M:SAVE service 
routine to perform the saving operations or it may save 
the contents of the registers itself. 

4. When the real-time task is completed, it may restore 
the context of the interrupted task and exit via the 
standard Sigma 2/3 exit procedure or may have these 
functions performed by the M:EXIT service routine. 

Note that this is a last-in, first-out form of scheduling. 
The interrupting task may itself be interrupted at any time 
during execution by a higher priority task, up to the maxi­
mum possible number of tasks in the system. 

Each time, a new task saves the status and register contents 
of the interrupted task. When the new task exits, control 
is returned automatically to the task it interrupted. If there 
is another interrupt waiting between the I evel of the current 
task (which is just completing) and the interrupted task, the 
originally interrupted task is immediately interrupted again 
and the new (intermediate) task follows the same procedure. 
Thus, it is never necessary for any task to know what task 
precedes or follows it. The task merely preserves and re­
stores the environment according to the established rules. 

The design of the hardware priority system makes it unneces­
sary for the Monitor to be involved in the actual scheduling, 
and this procedure allows the task and programs to indepen­
dently control the execution priority 'of certain operations 
within the foreground. For example, a real-time fore­
ground task that is activated by an external interrupt may 
perform some processing and then issue a special Write 
Direct to trigger another related task to continue the pro­
cessing at a higher or lower interrupt level. If the Write 
Direct is to a higher level, the interrupt to the higher level 
takes place immediately and the new task is begun. More 
frequently, the Write Direct is to a task at a lower priority 
level, and in this case the current task exits in a normal 
manner and the highest priority "waiting II task wi II become 

active. This task mayor may not be the one that just re­
ceived the Write Direct. Eventually, the task that re­
ceived the Write Direct will be reached, and this task will 
then continue the processing at that level. Thus, rea I-time 
foreground programs can have an intricate schedul ing scheme 
with no RBM intervention. 

An example of interrupt-driven scheduling is illustrated in 
Figure 5. 

LOADING FOREGROUND PROGRAMS 

Foreground programs may be loaded into core for executi on 
in any of several ways. All programs must reside on the RAD 
to be read into core memory for execution. They must be 
written onto the RAD by the Overlay Loader or the Absolute 
Loader.t In each of the methods described below, only the 
root is loaded into memory as a result of the action taken. 
Segments must be read in by subsequent calls to M:SEGLD. 

The most common method of loading a foreground program is 
through a call to M:LOAD by another foreground program. 
The call takes place at the priority level of the foreground 
program and the request is placed into the queue stack. The 
program is actually loaded by the Monitorsubroutine S:LOAD 
at the level of the RBM Control Task, and this method is the 
most logical one to be used. It is based upon conditions 
automatically detected by other foreground programs and 
requires no response or assistance from the operator. 

Another method of loading a foreground program is through 
an unsolicited key-in by the operator. The operator must 
generate a Control Panel Interrupt and, in response to the 
request II KEYIN, type in "Q name", where "name II must 
be the name of a foreground program residing in the user 
processor area of the RAD. This action results in a call to 
M:LOAD to queue the request. This method could be used 
in response to conditions detected outside the computer sys­
tem (e.g., a certain time of day). Both the above methods 
apply to semi resident as well as nonresident foreground pro­
grams. For resident foreground programs, they would be 
used only to obtain a fresh copy of a particular program 
without rebooting the entire system. 

Loading through use of the queue stack requires use of the 
nonresident foreground area whether or not the request is to 
be loaded into this area. Therefore, whenever a nonresident 
foreground program is loaded, all queue stack loading is 
suspended unti I the program occupying the nonresident fore­
ground area releases the area by unloading. 

tSee the lABS control command description in Chapter 2 
for restrictions regarding the use of the Absolute Loader. 

Loading Foreground Programs 63 



High ________ _ 
I/O AIO rcvr(2) 

I/O INTERRUPT 

FGND 1 

FGND 2 

FGND 3 

RBM CONTROL TASK 

BACKGROUND 

[6 
Request CHECKPOINT 

.-L 
~:----~ 1 : ~ I, 

Initiate I/~ revr) 

....... [2] 

0--------------[2] 'BKG RESTART' 

CKPT CKPT rcvr{l) 

--------tD---.: I I 
'BKG ~KPT' 

----I r--, r'" ---

BKGNDt---~BGt-- - -- - - - - - - -- - - - -- --------.fBKGND __ --..' L-.I ... ' __ _ 

, , f , f , , f f f f 1 
TO T1 T2 T3 T4 T5 T6 T7 T8 T9 Tl0 Tll 

TIME SEQUENCE------~·-
Note: Times need not be equally spaced. 

Time Point Activity (Meaning) 

TO 

T1 

T2 

The background is executing. 

An interrupt is received for Foreground Task 2 which becomes active and saves the environment of the 
interrupted background task into its TCB. 

Foreground Task 2 requests an I/O operation, specifies an AIO Receiver, and exits. The background 
resumes processing. 

T2.5 An interrupt is received for Foreground Task 3 which interrupts the BG. 

T3 An interrupt is received for Foreground Task 1 which becomes active and saves the environment of the 
interrupted task (Task 3) into its TCB. 

T4 At channel end, an I/O interrupt is received for the operation initiated by Foreground Task 2; the 
I/O Interrupt Task saves the environment of the interrupted task (Task 1). The AIO Receiver is 
entered at the I/O interrupt level and triggers Task 2, indicated by dotted line at FGND 2 level. 

Figure 5. Foreground Priority levels 

64 Loadi ng Foreground Programs 



Time Point Activity (Meaning) 

T5 The AIO Receiver returns via a RCPY L,P instruction. The I/O Interrupt Task exits, restoring the 
interrupted task's status. Foreground Task 1 resumes operation, requests a checkpoint of the back­
ground, and specifies a Checkpoint Complete Receiver. This action causes the RBM Control Task 
to be triggered, indicated by broken I ine at RBM Control Task level. 

T6 Foreground Task 1 exits, restoring the interrupted task's status. This was actually Task 3, but Task 2 
is waiting and it immediately becomes active. 

T7 Foreground Task 2 exits, restoring the interrupted task's status. This was Task 3. It becomes active 
and continues from where it was suspended. 

T8 Foreground Task 3 exits, restoring the interrupted task's status. This was actually the background 
task. Since the RBM Control Task was triggered at T5, it is the highest waiting interrupt level. The 
RBM Control Task becomes active and stores the interrupted task's status into its TCB. The RBM 
Control Task ca lis the RBM Subtask S:CKPT which writes the background into the RBM Checkpoint 
area on the RAD. S:CKPT then extends memory protection to the background and enters the specified 
Checkpoint Complete Receiver at the RBM Control Task Level. In this illustration the Checkpoint 
Complete Receiver triggers Foreground Task 1 with a Write Direct instruction. 

T9 Foreground Task 1 becomes active and saves the environment of the interrupted task in its TCB. The 
background area is now available to Foreground Task 1 for instructions and/or data. When processing 
is comp lete, Foreground Task 1 requests a restart. 

no Foreground Task 1 exits, restoring the interrupted task's status (in the Checkpoint Receiver, which 
returns via a RCPY L, P instruction). The RBM subtask S:CKPT now completes its operation and 
returns to the RBM Control Task which calls in the subtask S:REST to restart the background task. 
S:REST first clears the background area, then reads the checkpointed background task in from the 
RAD. The background is then set "unprotected" which completes the restart operation. 

T 11 The RBM Control Task exits, restoring the status of the interrupted background task which then 
resumes processi ng. 

Figure 5. Foreground Priority Levels (cont.) 

Two other methods of loading foreground programs are avail­
able. They involve control commands normally used by the 
background, are part of a background job stack, and must 
be preceded by an FG key-in. These commands are 

!XEQ initiates loading from whatever RAD file to 
which background operational label OVisassigned. 
The method presumes that either the appropri­
ate OV oplb assignment has been made, or 
that the program to be loaded is on the RAD 
fi Ie RBMOV to which the label OV is assigned 
by default. 

!name causes the foreground program "name II to be 
loaded in the same way a background processor 
is loaded. The foreground program must reside on 
either the System Processor or User Processor areas 
of the RAD. The user is responsible for avoiding 
the dupl icati on of program names. 

The control command methods are closely tied to back­
ground schedules and do not provide adequate response to 
real-time needs. However, they can be used when de­
bugging foreground programs. 

LOADING RESIDENT FOREGROUND PROGRAMS 

Loading of real-time programs into their predefined RAD 
files can be accomplished by the Absolute Loader from the 
background job stack, or resident foreground programs can 
be written into their predefined RAD files by the Overlay 
Loader. It is not necessary to create the foreground pro­
grams when the system is created. However, to get the 
foreground program in absolute form will require either the 
use of the Overlay Loader or that the job be assembled in 
absolute as a self-contained package. 

LOADING NONRESIDENT FOREGROUND PROGRAMS 

Nonresident foreground programs are loaded by the Monitor 
service routine M:LOAD. Once loaded, these programs 
can be connected to an interrupt via an initialization rou­
tine or else can be triggered by a code given in the pro­
gram's TCB. These programs then behave exactly I ike 
resident foreground programs. If the program just loaded 
resides in the area of core referred to as the nonresident 
foreground area, the nonresident foreground area is ti ed up 
unti I the program releases this space. Ordinari Iy, a program 

Loadi ng Foreground Programs 65 



releases space by a call to M:LOAD to "unload". How­
ever, a FORTRAN program has no means of performing this 
unload except by calling a special library routine. A 
method is provided to automatically unload this area when 
M:ABORT or M:TERM is called by the task occupying 
the nonresident foreground area. Therefore, a FORTRAN 
program calls the library routine L:OP (generated by the 
compiler when the program calls STOP) to terminate and 
unload. 

FOREGROUND INITIALIZATION 

When a foreground program is loaded, it may either be 
initializedt by RBM or may have its own initialization rou­
tine (coded in assembly language). If the header of the 
foreground program contains a transfer address, RBM honors 
this address as the entry point to an initialization routine. 
This routine may arm and enable (or whatever) one or a 
number of related real-time interrupts. It can also set RAD 
fi I es for subsequent use and set up in itia I va lues in core 
data tables. The initial ization routine runs at the priority 
level of the RBM Control Task with the privileges of a fore­
ground program. The initialization routine should make no 
calls on routines requiring temporary storage, since the 
RBM temp stack is the one in use. When foreground 

t See Overlay Loader options in Chapter 7. 

initialization is completed, the routine returns to RBM via a 
register copy of L to P. Foreground initial ization routines will 
also be executed any time the system is rebooted from the RAD. 

TASK CONTROL BLOCK FUNCTIONS 

The Task Control Block (TCB) is a convenient means for 
organizing and storing information necessary to attain pro­
per context switching, define dynamic blocking buffer 
poois, define temporary space necessary for reentrancy, 
and arm and enable the associated task. A foreground 
program may have one or more TCBs within the program 
(one for each task), but it is assumed that the fi rst 
loadable item within a foreground program is a TCB. The 
TCB is used by the Monitor service routines M:SAVE, 
M:EXIT, M:LOAD, and by the Control Command Inter­
preter upon encountering a !C: command. 

The TCB consists of 17 words and can be created at assembly 
time with Extended Symbol, or at load time by the Overlay 
Loader. (A FORTRAN program must have its TCB created 
by the Overlay Loader). The TCB is usually a block of 
code contiguous to the task it describes, with address literals 
pointing to the temporary stack space. A DATA statement 
can set the initial code for the interrupt level state for the 
task interrupt level. The complete contents of the TCB 
are shown in Table 17. 

Table 17. Task Control Block (TCB) 

Location Contents Set by 

TCB+ 0 ADRL PSD Asse mb Ie r /Loade r 
0 - 3 4 5 6 7 15 

1 R-bit No. 
T a x Dedicated Interrupt Location Assembler/Loader 

For WD 

2 
a 3 4 5 718 11 I 12 15 

Assembler/Loader 
0001 a Code I 0000 I Int. Group No. 

3 ADRL TEMPBASE (temporary stack) (FWA) Assembler/Loader 
_. 

4 ADRL TEMPLIM (temporary stack) (LWA+ 1) Assembler/Loader 

5 Contents of L register from interrupted task Current task (on actual entry) 

6 Contents of T register from interrupted task M:SAVE (or current task) 

7 Contents of X register from interrupted task M:SAVE (or current task) 

8 Contents of B reg i ste r from i nte rrupted task M:SAVE (or current task) 

9 Contents of E register from interrupted task M:SAVE (or current task) 

10 Contents of A register from interrupted task Current task (on actual entry) 

1 1 Contents of location 0006 (K: BASE) from interrupted task M:SAVE 

66 Foreground Initialization/Task Control Block Functions 



Table 17. Task Control Block (TCB) (cont.) 

Location Contents Set by 

12 Contents of location 0007 (K:TCB) from interrupted 
task. 

13 Dynamic base (K:DYN) for temp of current task; 
initially TEMPBASE +6 

14 Buffer pool LWA +1. 

15 Number of buffers{1::: n :::16)(0 if unused). 

16 "Use II bits for buffers in pool (0 if unused). 

M:SAVE 

Assembler/Loader (changed by M:RES and M:POP) 

Assembler/Loader 

Assembl er/Loader 

M:OPEN or M:CLOSE 

PSD + 0 Interrupt task status flags In terrupt sequence 

where 

1 Interrupted task P register 

2 First instruction of current task 

Rema inder of program (The PSD must be contiguous 
with the program but need not be continguous with 
the TCB. ) 

Interrupt seque nee 

Assembler/Loader 

ADRL PSD is the Program Status Doubleword. It is the location shown in the dedicated interrupt location when 
the interrupt takes place. 

R-bit No. for WD is the hexadecimal value (from 0 to F) that indicates the register bit that identifies the 
particular interrupt level within the Interrupt Group (the hardware block of 16 possible interrupts). 

T is the flag that indicates whether the M:SAVE and M:EXIT routines should set location 0001 to 0007; 
o means yes, 1 means no. (T must be 0 if any Monitor service routines are used. ) 

X indicates whether or not the task is to be triggered at load time: 1 means yes, 0 means no. A code of 7 
is issued subsequent to issuing the code (normally 2, "Arm and Enable ") given in word 2. 

CODE is the interrupt system control code (as defined in the Sigma 2 and Sigma 3 Computer Reference Man-
uals), that indicates current or desired initial interrupt control status. 

Buffer pool is an amount of space from one to 16 buffer areas in length, each of which is equal in size to the 
value contained in K:BLOCK. 

"Use II bits are bits, from left to right, beginning with zero, showing which of the maximum number of buffers 
have been allocated by M:OPEN and have not yet been closed by M:CLOSE. 

Task Control Block Functions 67 



Note: The code in TCB+2 is the exact code used in the 
Write Direct that sets the interrupt level. This code 
is described in the Sigma 2 and Sigma 3 Computer 
Reference Manuals under IIInterrupt System Control. II 

Bit T in word TCB + 1 indicates whether the task is using 
the Monitor I/O routines and the floating accumulator; if 
bit T is zero, a temporary stack is required and the M:SAVE 
routine will initialize locations 0001 through 0006, after 
saving the previous pointers for the interrupted task. If 
bit T is a 1 (meaning no floating accumulator and no 
temporary space are required), the M:SAVE routine will 
not set these locations. In a real-time environment it is 
recommended that a user does not set the T bit to 1 (the 
floating accumulator and temporary storage pointers are 
saved). The Monitor service routines M:SAVE and M:EXIT 
do not, themselves, use any temporary storage. 

When the task is programmed in FORTRAN, the task en­
trance and exit, TCB, and task entrance procedure are set 
up by the Overlay Loader. The module load routine 
M:LOAD sets the pointer to the PSD into the dedicated 
interrupt location and arms, enables, and optionally triggers 
the associated interrupt level. 

The background program wi II have a Task Control Block in 
protected foreground space. 

Caution: Locations 1 through 5 in the zero table are not 
saved and are recreated from location 6. Thus, 
locations 1 through 5 must not be changed by a 
foreground program or they wi II not be the same 
after an interrupt has taken place. 

When the Overlay Loader creates the TCB for a foreground 
task, the items shown in Figure 6 are generated adjacent 
to the task. The transfer address given in the object deck 
is not treated as the entry point to an initialization routine, 
but is used as the entry address for that task. The task wi II 
be armed, enabled, and possibly triggered when loaded for 
execution depending on the contents of words 1 and 2 of 
the TCB, suppl ied to the Overlay Loader on the! STCB card. 

After a foreground program is loaded into core, certain 
items in the TCB are examined. A fatal load error results 
if the number of specified operational labels requiring 
blocking buffers exceeds the number of avai lable blocking 
buffers (word 15 of TCB). If the number of avai lable block­
ing buffers is sufficient, word 15 of the TCB is adjusted to 
reflect the current blocking buffer requirements. 

In the event of a fatal load error in response to a load re­
quest from a background job stack via an ! XEQ or ! name 
command, the following message is printed on the DO: 

! !ABORT CODE XE, LOCA nON FFFF 

If the request came from a queue stack load, the following 
message is logged on the DO: 

NONRES FGND PGM xxxxxxxx LOAD ERROR 

68 Foreground Priority Levels and I/O Priority 

If a program has an initialization routine, that routine is 
responsible for storing word 0 of the TCB (the address to 
receive the interrupted task's PSD) into the dedicated in­
terrupt location, as well as arming and enabling the appro­
priate interrupt level for each task within the program. 

The initialization routine may also be used to assign any 
specific operational labels required by the program {e. g., 
the operational label or device unit number required to 
read in subsequent segments. 

If the program has no initialization routine, word 0 of the 
first loaded task (actually word 0 of that task's TCB) wi II 
be stored into the dedicated interrupt location for that task 
when the program is loaded. Next, the associated inter­
rupt level is disarmed to remove any waiting interrupts; 
then it is armed, enabled, and possibly triggered, depending 
on the contents of words 1 and 2 of the TC B. 

When a foreground task is activated, control is transferred 
to the address given in the dedicated interrupt location, 
where the interrupted task's PSD is stored, and execution 
resumes at PSD+2 at the level of that foreground program. 
This is a hardware function that preserves the interrupt 
status and execution location of the interrupted task. Next 
the register contents of the interrupted task must be saved. 

Normally, the first instruction in a foreground program will 
store the contents of the accumulator into word 10 and the 
contents of the L register into word 5 of its TCB and then go 
to the Monitor service routineM:SAVE which will store the 
remaining register's contents into the active task's TCB. 
M:SAVE wi II also store the contents of K: TCB (used exten­
sively by the Monitor to identify the currently active task) 
into word 12 of the TCB, and set K:TCB to point to the 
active task's TCB. If the active task requires temporary 
storage (word 1, T =0), the contents of K:BASE are stored 
into word 11 of the TCB and K:BASE is set to the first word 
address of the active task's temp stack. The floating ac­
accumulator is then set to point to the first six cells of 
the active task's temporary storage. 

When the currently active task has completed all its opera­
tions, it exits through the Monitor service routine M: EXIT 
whi ch restores the genera I register's contents and resets 
K:TCB and, if applicable, K:BASE. M:EXIT also performs 
a hardware exit sequence, by which it restores the interrupt 
status and the overflow and carry indicators, and returns 
to the interrupt task. 

FOREGROUND PRIORITY LEVELS AND I/O PRIORITY 

All foreground tasks with a priority level lower than the 
I/O priority level and operated without interrupts inhibited 
may use the Monitor I/O routines without any special re­
strictions. However, foreground tasks that have interrupts 
or have an interrupt level higher than the I/O priority level 
level must not use Monitor I/O. 

The recommended procedure for a task whose interrupt level 
is higher than the I/O priority level is to trigger a task 
whose priority is lower than the I/O priority. This lower 



TEMP BASE 

TCB 

-I 
n-word 

= exloc, specified on 
! $ROOT card. 

n = temp. specified on 

.. Word 0 

2 

3 

4 

5 

12 

13 

14 

15 

Word 16 

Word n 

ENTRY 

Reserved Area 

! $ROOT card; first five 
words of temp are float­
ing accumulator; sixth 
word is used by Fla . 

TEMP LIM 

I-----------------------------I-} Supplied on !$TCB card. 

ADRL Word n 

- Interrupt Information 

TEMPBASE Temp Stack FWA. 

TEMPLIM Temp Stack LWA + l. 

1-----------------------------1 

} 
Reserve for savi ng con­
text of interrupt task. 

K:DYN (Dynamic Temp Pointer) 

Buffer Pool LWA + 1 

No. Avai lable Buffers 

Initially set to 
TEMPBASE + 6. 

Set to Common Base. 

Common Base - Last 
Loaded item/K:SEC. 

Initia" y set to zero. 
r-----------------------~-.---End ofTCB 

} 

Two-word reserve that 

Use Bits 

- PSD Reserve 
- rece ives the interrupted 

r-----------~-----------~~ 
task's PSD. 

STA 

RCPY 

STA 

RCPYI 

B 

ADRL 

B 

ADRL 

Foreground Task 

TCB+ 10 

L,A 

TCB+5 

P,L 

M:SAVE 

TCB 

* $ + 1 

ENTRY 

Code to save registers, 
TCB pointers, and temp 
pointers. 

Transfer Address 

Figure 6. Task Entrance Format 

Foreground Priority Levels and I/O Priority 69 



priority task would then perform the required I/o opera­
tions. Generally, these high-level tasks are for emergency 
situations where no I/o is performed or when the task does 
its own I/o due to special requirements. 

AIO RECEIVERS 

An AIO Receiver is a means whereby a foreground program 
can initiate an I/o operation, release control to lower 
level tasks, and regain control when the I/o operation is 
completed. The Ala Receiver itself is a closed subroutine 
which operates at channel end (or zero byte count, if 
specified) at the priority level of the I/o interrupt. It is 
used in conjunction with an I/o operation specifying 
"initiate only and return II (no wait). Typically, in order 
to maximize compute and I/O overlay, the foreground pro­
gram wi II issue an I/o request with the "no wait" option 
and specify an Ala Receiver. When the I/O operation is 
successfully initiated, this foreground task exits from the 
active state {by a call to M:EXIT) and is restored to the 
active status at channel end by a Write Direct to trigger 
the interrupt level (from its Ala Receiver). The next I/o 
operation for that device file-number must be a "check" 
operation to complete the end-action of the file. 

For I/o to RAD fj les, the Ala receiver may be activated 
before the operation is actually complete. This will happen 
whenever a transfer across a track boundary occurs, more 
than X' 1 FFF' bytes are requested, or a bad track is en­
countered. The calling task (not the Ala receiver) must 
issue a "check II operation to complete the transfer. An Ala 
receiver specified for the "check" operation, will be 
honored. 

Special considerations for use of Ala Receivers are: 

1. The operation requesting an Ala Receiver is an 
"initiate and return II operation. If the device or the 
file is busy, The I/o operation is not initiated and a 
busy status is returned. It is the user's responsibi I ity 
to determ ine the course of action to be taken at this 
point (e.g., loop unti I ready or ignore the operation). 

2. If the file being used is a blocked file, an actual I/o 
operation may not be required, hence no channel end 
interrupt and no Ala Receiver operation. In this 
instance, the X register wi II be set to -1 to inform 
the user that the Ala Receiver wi II not be effective. 
A "check II operation is sti II required on the fj Ie be­
fore another I/o operation may be performed. 

3. If the Ala Receiver merely retriggers the task that 
initiated the operation, a danger exists in that it is 
quite possible for the Ala Receiver to operate before 
the task exits from its "active II state. Thus, the cur­
rently active task is retriggered, which results essen­
tially in a no-operation. One means of avoiding this 
problem would be to have the Ala Receiver set a flag 
to inform the active task that it has run. In this way, 
the active task could inhibit interrupts prior to exiting, 
test whether the Ala Receiver has already operated, 
and if so, restore interrupt status and return to the 

70 Ala Receivers/Checkpointing the Background 

start of the task. If examination reveals that the Ala 
Receiver has not run, the task merely exits through 
M:EXIT which will properly restore the interrupt status. 
Another means of avoiding this difficulty is to have 
the Ala Receiver trigger a task lower in priority than 
the active task. This lower priority task could re­
trigger the task initiating the I/O operation, thereby 
providing a positive trigger. 

The form of the call to the Ala Receiver by the I/o Inter­
rupt task is 

LDS AIODSB 

RCPYI P, L 

B Ala Receiver Address 

(devi ce status byte 
from Ala in bits 0-7, 
device number in 
bits 8-12) 

The Ala Receiver routine must return to the location con­
tained in the L register on entry. All registers are assumed 
to be volati Ie, which means that they need not be saved 
and restored to their former contents. Because the Ala 
Receiver is processed at the priority level of the I/o Inter­
rupt, the processing in this routine should be of very short 
duration so as not to interfere with other I/o operations 
that may be in process. See also "End Action II in Chapter 5. 

CHECKPOINTING THE BACKGROUND 

A foreground program may require use of the background 
area for either instructions or data. A checkpoint feature 
is included in RBM to allow access to the background area 
by a foreground program by writing any active background 
program onto the RAD and extending memory protection to 
the background area. 

A checkpoint operation is initiated by a call to M:CKREST 
with the appropriate option. M:CKREST wi II return a status 
specifying whether or not the request was honored. The 
request will not be honored if the background has already 
been either checkpointed by a foreground request or auto­
matically checkpointed as a result of loading a nonresident 
foreground program extending into the background. It is 
the responsibility of the user to schedule the use of the 
background space by foreground programs. The actual 
checkpointing is accomplished either at the priority 
level of the RBM Control Task or at the priority of the 
calling task. 

If the checkpoint is performed at the priority level of the 
call ing task, a return from M:CKREST with a status of zero 
(A = 0) indicates that the checkpoint has been performed. 
If the checkpoint is to be performed at the level of the 
ca II ing task, the requesting program must exit its "active II 
state to allow the checkpoint operation to be performed. 
The program requesting the checkpoint would generally 
specify a "Checkpoint Complete Receiver". This receiver 
is operated at the priority level of the RBM Control Task 
when the checkpoint is complete. 



The receiver wi II generally retrigger the requesting pro­
gram to inform it of the completion of the checkpoint. 
Return from the Checkpoint Complete Receiver is to the 
location contained in the L registers on entry. All registers 
are assumed to be volati Ie, and need not be saved and re­
stored to their former contents. 

When the foreground program no longer requires use of the 
background area, it should restart the backgrol:Jnd task by 
a call to M:CKREST with the "restart" option. 

FOREGROUND CODING PROCEDURES 

Conformity to the following conventions in coding fore­
ground programs wi II increase the chances of recovery from 
a power fai lure: 

1. Normally, when a task performs its own input/output, 
it will inhibit interrupts before itchecks channel status, 

loads the do nnel registers, and issues the SIO. If the 
SIO instruction occurs within the 16 cells following 
the inhibit instruction, the Power On Task will be able 
to determine that I/O has not been initialized on this 
channel (if a power failure occurs after the interrupts 
are inhibited but before the SIO is issued) and there­
fore wi II not s i mu late an I/O interrupt. 

2. If any task that uses the counter-equals-zero interrupt 
resets the dedicated interrupt location to zero before 
unloading or exiting, the Power Off Task wi II not arm 
and enable this level. This will prevent spurious 
interrupts. 

3. For all Sigma 2 interrupts and the Sigma 3 external 
interrupts, the interrupt status is determined through 
the TCB chain (each TeB contains the address of the 
TeB of the task last interrupted). Therefore, any task 
that has entered its TeB in this chain will be re­
activated. Entering the TCB chain is normally per­
formed via a call to M:SAVE. 

Foreground Coding Procedures 71 



7. OVERLAY LOADER 

The Overlay Loader can be used to create overlay programs 
for later execution in either the foreground or background. 
Overlaid programs can be permanently entered (as a fi Ie) 
into either the system or user processor areas, or into a 
temporary overlay file. Since they are stored on the RAD 
as an absolute core image, they can be quickly loaded into 
memory for execution. 

A general overlay structure is illustrated in Figure 7. The 
structure is restricted to a permanently resident root seg­
ment and any number of overlay segments. (For background 
and nonresident foreground programs, the permanent root 
segment is resident only during actual execution.) For fore­
ground programs, the TCB and the initialization routine 
(i f one is present) must be in the root segment, but data 
and instructions can be located in both the root and the 
overlay segments. 

A COMMON data area can also be established for use by 
the root and overlay segments. 

Each segment is created by the Overl ay Loader from one or 
more object modules (assembly language, FORTRAN, or 
I ibrary routines). The control commands required to create 
the overlay segments are defined in this chapter. During 
execution, the Monitor service routine M:SEGLD is used to 
control both the loading and the transfer of control between 
various segments. 

The overlay segments must be explicitly defined at load 
time and expl icitly called at execution time. There is no 
provision for automatically calling in a new overlay seg­
ment by a subroutine reference. However, the subroutines 
on a particular path may communicate with each other, with 
the restriction that it is the program's explicit responsi­
bi I ity to ensure that any subroutine referenced is cur­
rently in core. 

The Overlay Loader accepts input in Standard Sigma 2/3 
Object Language from predefined, prepositioned files, and 
prepares output in absolute core-image form on the RAD to 
be read by the RBM Loader (M:LOAD) for later execution 
in either foreground or background areas. If a resident or 
nonresident program can tolerate a loading delay of 20 to 
100 ms, foreground or background programs of virtually un­
limited size can be constructed by the use of overlays de­
spite limitations in available core storage. 

In creating core images on the RAD, the Overlay Loader 
performs the fol lowing functions according to user options: 

• Satisfies external reference/definition I inkages and 
resolves forward reference and displacement chains. 

• Searches specified libraries for unresolved references 
and loads these selected routines into core memory. 

• Builds the OV:LOAD table for the loading of overlay 
segments. 

72 Overlay Loader 

• Writes the overlay cluster onto the OV file. 

• AI locates COMMON. 

• AI locates temporary storage stacks. 

• Creates a Task Control Block (TCB) and initial ization 
i nformati on. 

• Creates the Public Library and associated transfer 
vectors (TVECT). 

• Outputs maps of segment names and addresses, external 
definitions, and information concerning COMMON 
and temporary areas. 

OVERLAY CLUSTER ORGANIZATION 

The overlay cluster is the collection of absolute overlays 
formed by the Overlay Loader from relocatable binary ob-
ject modules. (Note that the Loader does not accept an 
absolute load origin in any input module.) An overlay 
cluster usually consists of two principal sections: the root 
segment and the overlay segments although it may consist 
of only a root segment. Each segment consists of one or 
more binary modules and associated library routines. Over­
lay segments are numbered in any order by the user, except 
for the root segment, which is always designated as seg­
ment O. Those segments in core memory at anyone time 
form a path. Another overlay cluster with several paths 
is shown in Figure 8. Segments are shown as horizontal 
lines and, in this example, are numbered in the order in 
which they are built by the Overlay Loader. Note that at 
a given node, each path associated with a branch must be 
completed before a new branch is connected to this node. 

The overlay cluster shown above consists of a root and seg­
ments 1 through 15. Segments 0, 1, 3, 4, 5, 6 constitute 
a path. On the RAD or disk pack the root is preceded by 
a file header, one RAD granule in length, that contains in­
formation by which the RBM Loader M:LOAD can correctly 
read the root. The root is resident at all times during exe­
cution of the overlay program and contains information 
(OV:LOAD table) for loading of the remaining overlay 
segments. 

Communication between segments by external reference/ 
definition linkages is subject to the following restrictions: 

1. No segment in a path may reference a segment in 
another path. 

2. The user must ensure that all communicating segments 
are in core memory during execution. 



Root 
(Segment 
No. 0) 

Root Area 

Low Core 

Overlay Segment n 

Overlay Segment No. 3 

Overlay Segment 
No. 21 

Overlay Segment No. 2 

Overlay Segment 
No. 22 

Overlay Segment No. 1 

Overlay Area 

Figure 7. General Overlay Structure Example 

Blank 

COMMON 

Data 

Area 

COMMON 
Area 
(Optional) 

High Core 

Overlay Cluster Organization 73 



2 I , 

6 
5 J 

4 I I 7 
3 I I 8 I 

~ I 9 

10 I 

12 
11 14 I 

I 

13 I . 
I 15 J 

I 

Figure 8. Sample Overlay Cluster Configuration 

3. Because the Overlay Loaderwill satisfy a linkage only 
within a path, identi cal references and definitions 
may be used in different paths that do not contain a 
common segment. However, the user must avoid refer­
ences to the same definition in different higher level 
segments. 

To satisfy any remaining unsatisfied primary references, 
the Overlay Loader searches the following libraries in the 
speci fi ed sequence: 

1. Publi c Library 

2. Monitor Servi ce Routines 

3. Basi c or Extended Library 

4. Main Library 

CORE LAYOUT DURING LOADING 

Background memory during the operation of the Overlay 
Loader is divided into four sections: 

1. A fixed area large enough to contain the background 
temp stack, the Overlay Loader root, and the Loader 
overlays. 

2. The segment table, fixed at 10(n + 1) where n equals 
the number of segments, which contains the user's 
OV:LOAD table. 

3. A dynamic area in which the segment is loaded. 

4. A dynamic area containing the symbol tables (alloca­
tion is eight words per symbol). 

If areas 3 and 4 overlap at any point in the load process, 
overflow occurs and loading aborts. 

OVERLAY LOADER OPERATIONAL LABELS 

The Overlay Loader references the operational labels listed 
below. Some assignments are user-defined, while others 
are handled internally by the Job Control Processor or by 
the Overlay Loader itself. All other operational labels 
referred to on !$LD cards must be assigned and positioned 
by the user prior to the ! 0 LOAD card. 

Label 

CC 

DO 

GO 

LI 

OC 

OV 

PI 

XI 

RS 

LS 

ID 

Explanation 

Control commands. 

Control commands as read from CC, maps, and 
diagnostic messages. The default assignment is 
that given by the Job Control Processor on read­
ing a ! JOB card. 

Sequential-access fi Ie that contains object mod­
ules to be processed by the Overlay Loader. 
Object modules are written onto GO by a pre-
ceding processor. The Loader rewinds GO 
initially. GO receives a default assignment by 
the Job Control Processor to the permanent fi Ie 
RBMGO in the System Data area. 

Assigned internally to System or User Library as 
library searches are performed. 

Abort messages and Overlay Loader messages 
that require operator attention. 

Output file for the Overlay Loader containing 
the completed overlay cluster. If the user wishes 
to have the overlay cluster in a permanent file, 
he must key in SY (for write-protected fi I es) and 
assign OV to that permanent file. By default, 
OV is assigned to the permanent file RBMOV in 
the System Data area. 

Used for loading the Overlay Loader's own 
overlays. PI is assigned by the Job Control 
Processor. 

Temporary RAD or disk pack scratch file con­
taining the symbol table for each segment. 
XI is assigned by the Job Control Processor. 

Assigned internally to read the RBM Symbol 
Table (RBMSYS) from the System Data area. 

Assigned internally to read the Public Library 
Symbol Table (LIBSYM) from the System Data 
area. 

An optional operational label used to write 
the idents of noli I ibrary programs for use by 
Debug at execution time. If the user assigns 
ID, the assignment must be for a blocked file 
that has a record length of five words. By 
default, ID is assigned by the Job Control Pro­
cessor to RBMID (a one-sector file) in the System 
Data area. 

74 Core Layout During Loading/Overlay Loader Operational Labels 



MAP 

Three types of maps may be output to the DO devi ce 
following PASS2, according to one of three MAP con­
trol commands that may be input: a SHORT map (! $MS), 
LONG map (!$ML), or PROGRAM map (!$MP). If 
no map control command is specified, no map will be 
output. 

*MAP 

Figure 9 shows the format for a LONG map. Note that 
DEFs in the Permanent Symbol Table are mapped after the 
Overlay Task line. The format for a PROGRAM map would 
be the same as the LONG map except that I ibrary and 
Permanent Symbol Table symbols are suppressed. The lines 
of the map that are flagged with an asterisk (*) show the 
format and output of a SHORT map (in an actual SHORT 
map no asterisk would appear in the listing). A definition 
of each item of the map is included in Figure 9. 

*OVERLAY TASK {~~} ORG = xxxx HLLOC = xxxx CBASE = xxxx CSIZE = xxxx UMEM = xxxx SECT xxxx 

{
NONE} *ROOT ORG = xxxx LWA = xxxx LEN = xxxx TRA = 
xxxx 

SEV = xxxx OV:LOAD = xxxx 

DEF L/I S/U/p B/E/M yyyy 

B/E/M zzzz 

*SEGMENT IDENT NODE ORG LWA LEN TRA SEV 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

REF 

-{(SEGMENT 

*SEGMENT 

*ERRSEV xxxx 

?\-END MAP 

where header keywords have the following meaning: 

Overlay Task Keywords 

ORG First word address of the Overlay Task area. It is the FWA of the Temp stack. 

HLLOC Last word address of longest segment. 

CBASE Base of COMMON. 

CSIZE Largest COMMON size encountered. 

Fi gure 9. Load Map Format 

Map 75 



Overlay Task Keywords (cont .) 

UMEM 

SECT 

Root Keywords 

ORG 

LWA 

LEN 

TRA 

SEY 

OY:LOAD 

General Keywords 

76 Map 

DEF 

REF 

Sl ... S8 

L/I 

S/U/p 

S/E/M 

yyyy 

zzzz 

The number of locations between the end of the longest path, and either the beginning 
of COMMON or the end of the assigned task area. 

The number of sectors required to store entire overlay cluster. 

FWA address of the root. In the foreground, this is assumed to be the address 
of the TCB; in the background, it is the FWA of the root. 

Last word address of the root segment. The area from ORG to LWA includes 
the root code and the OY:LOAD table (and in the foreground, the TCB). 

LWA-ORG+1. 

Background - last end transfer encountered on a module used to form the root. If there 
is no transfer address, 'NONE' is output. 

Foreground - the entry address of an initialization routine that arms and optionally 
triggers interrupts at run time. If the Loader builds the TCB, it is assumed that no 
such initialization exists and TRA=NONE. 

Error severity encountered during loading binary modules. Taken from the END item of 
the binary module. 

Address of the OY:LOAD table. 

Error and identifier flags preceding external definitions and references. Possible flags 
are: 

D Doubl e definition or reference. 

U (DEF) - a definition declared, but given no value. 

U (REF) - reference unsatisfied in this path. 

P Primary reference. 

S Secondary reference. 

An external definition. 

An external primary or secondary reference. 

EBCDIC DEF /REF name of one to eight characters. 

Library or Input REF /DEF. 

System, User, or Public Library. 

Basic, Extended, or Main mode. 

Yalue of a DEF. 

The number of the segment in which this reference was satisfied. For unsatisfied 
references, zzzz is blank. 

Figure 9. Load Map Format (cont.) 



Segment Keywords 

IDENT 

NODE 

ORG 

lWA 

lEN 

TRA 

SEV 

ERRSEV 

END MAP 

Numerical identifier of this segment as found as the first parameter on the! $SEG card. 

The numerical identifier of the segment to which this one will be attached. If NODE 
is the root, 0 is output. 

Beginning location (execution) of this segment. The point in core at which loading 
begins. The first reserves before data in a segment are not output. 

lWA of this segment. Includes areas defined by RES and ORG. 

lWA-ORG+1. 

The last encountered transfer address is placed as an entry point in the OV:lOAD table 
for this segment. 

Same as for ROOT. 

Total error severity for loading process (0 or 1). If any SEV > 0 or there are unsatisfied 
primary references, ERRSEV=l. Only in forming a PUBLIB do double DEFs cause 
ERRSEV=l. 

Completion of loading process. 

Figure 9. load Map Format (cont.) 

CALLING OVERLAY LOADER X indi cates that the loader is to abort the job if 

The Overlay loader is requested via an ! OlOAD com­
mand wh i ch causes the root segment of the loader to 
be read into core memory from the RAD. The form of 
the command is 

a severity error greater than zero is encountered 
during loading. The loading procedure is com­
pi eted and the map is output. 

cmn for background tasks, cmn denotes an optional 

! OlOAD [segments, {~} , S, D, X, cmn] 

where 

segments denotes the number of segments in the 
overlay cluster. If "segments" is not specified, 
a zero is used, denoting that only a root segment 
is to be loaded. The value of the segments param­
eter may exceed the actual number of segments to 
be loaded. 

F or B specifies either a foreground (F) task or a 
background (B) task. The default case is 
background. 

S specifies a step mode of loading to be used for 
paper tape input. 

D indi cates the ident of each nonl ibrary module is 
to be written to operational label ID for use by 
Debug at execution time. 

COMMON size; for foreground tasks, cmn denotes 
either a base for COMMON or, in the case of 
zero COMMON, the upper limit of the task area. 

When the step mode of loading is defined, the operator is 
notified after the loading of each module from paper tape 
by the message 

! !BEGIN WAIT 

Depressing the .console interrupt button and keying in an S 
wi" initiate either the loading of the next module from the 
paper tape unit or the reading of the next control command. 
An X response causes the loading process to abort. 

In allocating COMMON for background programs, the 
Overlay loader compares the cmn parameter with the fi rst 
nonzero COMMON size allocation value encountered in 
loading and employs the larger of these two values. The 
COMMON base is set by subtracting the COMMON size 
from K:U NAVBG. 

For foreground programs having COMMON, cmn denotes 
the base (i. e., FWA) of COMMON. In this case the 
effective upper limit of the program is cmn plus the largest 

Cal ling Overlay loader 77 



COMMON size allocation value encountered in loading. 
For foreground programs in which COMMON is allocated, 
but in which cmn has not been specified, the COMMON 
base is set by subtracting the first nonzero COMMON size 
allocation value encountered from K:BACKP-l. For fore­
ground programs having no COMMON, cmn may be used 
to specify an upper limit for the program. If the program 
exceeds the limit, the Loader aborts. The default value 
of the area upper limit for foreground programs without 
COMMON is the upper limit of the nonresident foreground 
area (K :BAC KP- 1). 

The Loader makes no distinction between programs loaded 
in resident and in nonresident foreground. 

Reading an ! EOD control command causes the Overlay 
Loader to satisfy forward references, output any specified 
map, close fi les, and return control to RBM via M:TERM. 
The form of the command is 

CONTROL COMMAND FORMAT 

Except for the !OLOAD command, which is read by the 
Job Control Processor, the Overlay Loader control com­
mands are read from the CC device under Loader control. 
The general format of control commands is (I $mnemonic parameter 

where 

identifies the record as a control command. 

$ indicates that the control command is unique to 
the Overlay Loader. 

mnemoni c is the code name of an Overlay Loader 
control command and begins immediately fo"ow­
ing the! $ characters. 

parameter is a series of optional or required param-
eters unique to the specific command. Theformats 
of parameters are (1) a decimal integer of up 
to five positive numbers but having a value less 
than 32,767; (2) a hexadecimal string of the 
form ±xxxx; (3) an EBCDIC string of up to eight 
characters but not exclusively characters 0 

78 Control Command Format/Control Command Repertoire 

through 9; or (4) a string of the form EBCDIC 
string ± hexadecimal number. 

From one through eight blanks are permitted between the 
mnemoni c and the first parameter. If more than eight 
blanks are detected, the parameter list is considered empty. 

The only allowed delimiter between parameter fields is a 
comma; no embedded blanks are allowed in or between any 
fields. A single blank terminates the parameter string. 
Two successive commas indicate an empty field. Comments 
are allowed on a control card. 

CONTROL COMMAND REPERTOIRE 

BLOCK The ! $BLOCK control command defines oper-
ational labels that may require blocking buffers at run 
time. The list of such labels along with limits of avail..: 
able memory wi" be passed via the fi I e header to 
M:LOAD, which will allocate a blocking buffer pool at 
run time. The pool will be utilized dynamically to 
provide blocking buffers in cases where a call to RBM 
routines M:READ or M:WRITE is not preceded by a call 
to M:OPEN. A call to M:CLOSE may release any such 
buffers. Thus, if two operational labels were to use a 
blocking buffer area at different times, the first might 
release the area for use by the second. Only one of 
the two labels would be required on the ! $BLOCK 
command. 

M:LOAD checks which of the operational labels are as­
signed to block files at run time to make the pool allo-
cation. If such an allocation overflows the available 
memory space (between the end of the longest path and 
COMMON), the execution aborts. However, the user 
may define his own blocking buffer by specific calls to 
M:OPEN. Such an area should be in a reserved area 
of his own path. He should not use the dynamically 
allocated pool area, and blocking buffers may not be 
allocated in temporary stacks. Only one ! $BLOCK 
command is allowed in a single job step. The format 
of the ! $BLOCK command is 

where oplbj defines an operational label (which is a two­
letter mnemoni c or a FORTRAN devi ce unit number; e. g. , 
BI, 51, F: 106). The oplbi parameter may not be a device­
file number or file name. The oplb must be assigned to 
a block file. 

LIB The! $LIB control command specifies a new default 
library loading mode for the entire loading process. )f the 
LIB command is not present, the Overlay Loader follows 



the default case (Basi c System Library). ! $UB cards may 
occur at any point in the control deck and will take effect 
from that point. The format of the command is 

library,xr,y] 

where 

library must be one of the following EBCDIC codes. 

x,y 

Code Library 

B Basic 

E Extended 

specify the order of search. The x and y pa­
rameters areeitherof the following EBCDIC codes. 

Code Library 

S System 

U User 

The order in whi ch they are specified determines the 
order of search. Note that if y is not specified, only 
x wi II be searched. 

MS ML MP The MAP control commands specify that 
map information is to be output on DO. The three forms of 
map commands are shown below. 

If the! $MS (Short Map) control command is specified, only 
root and segment headers will be output. Also output is a 
summary containing the origin of the overlay program, the 
length of the longest path, temp stack size, memory that is 
available for the blocking buffer pool, and the COMMON 
base. The format of the command is 

If the! $ML (Long Map) control command is specified, the 
short map plus external references and all external defini­
tions and their values including the I ibraries and permanent 
symbol table are output. Double definitions, and definition 
declarations that were not given a value are flagged D 
and U, respecitvely. Unsatisfied primary references 
are flagged with UP, unsatisfied secondary references with 
US. The format of the command is 

The output of the! $MP control command is identical to 
that of ! $ML, except that library definitions and references 
and the permanent symbol table are suppressed. The format 
of the command is 

If relevant, information concerning the Public Library is 
also mapped. 

reB The! $TCB control command indicates (for a fore­
ground task only) that the Overlay Loader must create a 
TCB and reserve a PSD location, and must generate a call 
to RBM routine M:SAVE. In addition, information to ini­
tialize the TCB at run time will be passed in the file header. 
If no ! $TCB command is present, it is assumed that a TCB 
has been assembled into the root segment. Since the back­
ground TCB lies in protected memory, it cannot be assem­
bled into the root of the background overlay cluster, but the 
necessary information is passed by the Loader to M:LOAD 
via the file header. Therefore, the TCB option applies to 
foreground tasks only. The! $TCB command must precede 
the ! $ROOT command. The format of the command is 

(!$TCB w j ,w2 

where Wi are the values to be placed in words 1 and 2 of 
the created TCB. (See Chapter 6, Real-Time Programming. ) 

The Overlay Loader will handle specific and default 
cases of program execution and TCB initialization within 
the framework of the following restrictions: 

• The Overlay Loader defines all background Task Con­
trol Blocks completely, using the value of the temp 
parameter on the! $ROOT card, load information, and 
the! $BLOC K parameters. 

• In foreground tasks, if the user assembles the TCB as 
part of the program, it either must contain all informa­
tion as data or as external references satisfiable at 
load time, or be initialized by the task itself. A trans­
fer address is assumed to be a transfer to an initializa­
tion section that will do any required housekeeping, 
arming, enabling, or triggering the task. If no trans­
fer address exists, M:LOAD will arm and enable and, 
optionally, trigger the task using information in 
words 1 and 2 of the TCB. 

• If the Overlay Loader initial izes the TCB by means of 
the TCB parameters, it does so completely, using load 
information and values on the! $TCB and! $BLOCK 
cards. No partial initialization of a TCB is allowed 
with the exception of the blocking buffer pool. If a 
user bui Ids his own TCB, the TCB must begin at the 

Control Command Repertoire 79 



execution location plus the "temp" value specified on 
the! $ROOT command. 

• For foregroun~ tasks for which the Loader builds a TCB, 
the Loader will create the PSD reserve and a call to 
M:SAVE. The user's root is then entered either at the 
location specified in the transfer address, or at the 
FWA of the root when the transfer address is missing. 
The map will indicate a transfer address of "NONE" 
for the root. 

The user exits with either a call to the RBM routine M:EXIT 
or by a standard exit procedure. 

Publi c Library routines and Monitor servi ce routines called 
by the user program wi II require temporary storage areas 
that are dynamically allocated at execution time. These 
temporary storage areas must be allocated in a fixed storage 
stack that is reserved by the Loader at load time on the 
basis of the temp parameter on the ! $ROOT control com­
mand. In addition, the Loader will insert in the TCB the 
fi rst and last word addresses of the area. The temp area 
will be allocated preceding the root segment. It need not 
be a reserve in the module. 

For more information on initialization and structure of TeBs, 
see Chapter 6. 

ROOT The ! $ROOT command specifies that the modules 
that follow it constitute the root segment of the overlay 
cluster. A! $ROOT command must precede all ! $SEG com­
mands, and may be followed by ! $LD, ! $INCLUDE, ! $MD, 
! SUB, and! $LB commands, which cause the loading of 
those modu I es that form the root segment. Load i ng of the 
root will begin at the first cell following the temp stack for 
the background task. An execution bias may be specified. 
The user must ensure that the root segment, excl usive of any 
I ibrary loading, is less than 32K bytes. The root and its 
library are written as two records. Therefore, the library 
portion of the root may also be a maximum of 32K-l bytes, 
which gives a maximum root size of approximately 32K 
words. The format of the command is 

! $ROOT [temp,exloc,oplb,n] 

where 

temp defines the size of the overlay cluster's tempo­
rary stack needed for the largest possible nesting 
of Public Library and Monitor service routines. 
The default size is 80 cells. 

exloc specifies the beginning location of the area 
in memory that the overlay cluster will occupy at 
execution time. The default case is K:BACKBG 
for a background task and K:NFFWA for a fore­
ground task. The temp stack wi II be allocated at 
exloc. 

80 Control Command Repertoire 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. No 
default is provided. 

Note that if the oplb parameter is absent, ! $LO (Load) or 
! $INCLUDE control commands must follow! $ROOT to 
specify loading. If oplb is present and the n param-
eter is empty, loading proceeds from oplb unti I an ! EOD 
is encountered. 

LD The! $LD control command identifies one or more 
modules to be loaded as part of a segment. Each input file 
must be ordered in the same sequence as the ! $LO cards in 
the control stack accessing that fi Ie. The Overlay Loader 
reads only relocatable binary modules from the GO file and 
other input fi les specified on ! $LO, ! $SEG, and ! $ROOT 
cards. All files must be pre-positioned (GO is rewound by 
the Loader), and the modules must be in the same position 
on each file as calls on that file. The use of the IONT on 
the ! $LO card ensures the loading of the proper modul e. 
Note that the file must be positioned to the proper module 
in the file when the Loader reads from that file. Since 
there are no fi Ie-positioning control commands recognized 
by the Overlay Loader, each file must be constructed in 
correct sequential order. The form of the command is 

where 

oplb is the operational label of the medium from 
which the binary module is to be loaded. The 
default case for an empty field is GO. 

ident is an EBCDIC representation of the 
IONT of the program to be loaded. It is 

used for checking purposes only. If nm is speci­
fied' it indicates the number of modules to be 
loaded from oplb; no check of any ident is made. 
If this parameter is empty or is an ide nt, one mod­
ule is loaded. 

LB The $! LB command controls the search of libraries 
(for this segment only) to satisfy external references en­
countered during the loading of modules forming the seg-
ment. If the ! $LB control command is omitted, the 
Overlay Loader will first attempt to satisfy all references 
by definitions in other segments of that path or from the 
root, and then will search the libraries specified by !$UB 
or by the default case. Individual! $LB cards supersede 
! $UB or default for that segment only. Libraries are 
searched only on occurrence of a ! $SEG or ! EOO control 
command. ! $UB and ! $LB cards only set the mode and se­
quence of search. Only libraries on the RAD or disk pack 
may be loaded selectively using the ! $LB command. To 



input "library" programs from other media, the user must 
use standard ! $LD commands. The format of the com-
mand is 

i$LB library,m[,n] 

where 

library must be one of the following EBCDIC codes: 

Code Library 

B Basic 

E Extended 

m G n] specify the order of search. The m and n 
parameters are either of the following codes: 

Code Library 

S System 

U User 

If n is not specified, only m wi" be searched. There are 
no default cases for E, B, m, and n. 

INCLUDE The! $INCLUDE control command specifies 
external definitions in those library modules that are to be 
loaded with th i s segment, even though they are not refer­
enced in the segment. Their definitions will be included 
in the Symbol Table for use by higher-level segments. 
More than one! $INCLUDE command may be used. U­
brari es are searched according to a preceding ! $LB or ! $UB 
card or the initial default case. The format of the com­
mand is 

! $INCLUDE def1 ,def2,··· ,defn 

where defi is an external definition of a library program to 
be included in the segment. 

MD The ! $MD (modify) control command is used to 
change core locations at load time before the absolute 
overlays are written out onto the OV fi Ie. ! $MD commands 
must be inserted within a SEG sequence and apply only to 
the segment being loaded. A check is made that the 
effective address of the! $MD command lies in the segment 

and that any labels used are defined for the path the seg­
ment lies in. The Overlay Loader aborts if the modifica­
tion location lies outside the limits of the segment. 
Inserted values are not tested for range. External symbols 
(definitions) used in loc or value must have been previ­
ously defined. The format of the command is 

! $MD loc, value [, value
1

, value
2
,· .. ,value

n 
] 

where 

loc specifies the execution location of the first 
modification. 

valuei is the hexadecimal quantity to be inserted 
at loc + i (for example, value is inserted at loc, 
value

1 
at loc + 1, etc.). 

Both the loc and the valuei pa~ameters are subject to the 
restrictions set forth in "Control Command Format". Note 
that it is not possible to modify a library module by use of 
an ! $MD control command. 

SEG The! $SEG control command defines the modules 
that will form a segment. Numbers used to define a segment 
must be unique. Segment identifier numbers need not be 
consecutive. A segment, including its library, is restricted 
to a maximum of 16, 112 bytes since the segment and its 
I ibrary are written as one record on the RAD. 

Each ! $SEG or $! ROOT control command may be followed 
by ! $lD, ! $MD, ! $INCLUDE, ! SUB, and! $LB commands 
to load the modules to form that segment. The loading for 
a segment terminates on a new! $SEG control command. 
The control command stack is terminated by an !EOD. The 
user may not defer library loading to a higher level seg­
ment. The Loader wi" attempt to satisfy a" references 
present at a level from the libraries specified on ! $LB, 
! SUB, and! $INCLUDE commands or from the default li­
brary case. A given library is searched only once per 
segment. The format of the command is 

! $SEG si, sn [, oplb, nJ 

where 

si is a number less than or equal to X'FF ' used to 
identify the segment being loaded. It wi II be 
used to call the segment at run time. 

sn is the number of the segment to which this seg-
ment is attached. 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. 

Control Command Repertoire 81 



The following rules should be observed in defining segments 
for the overlay cluster: 

1. The longest segment must fit into core with the Loader 
and its tables. If a segment is too long, it may be re­
assembled as two modules and loaded as two segments. 

2. The Loader will first attempt to satisfy library refer­
ences using the Publi c Library and then will search the 
appropriate libraries on the RAD or disk pack. Using 
the! $INCLUDE command, other often-used library 
routines can be loaded with the root where they wi II 
be accessible to all segments. However, I ibrary rou­
tines loaded in any segment wi" be accessible only to 
segments in the same path. 

At execution time an expli cit call to RBM routine M:SEGLD 
with the segment identifier number and the ADRL OV:LOAD 
causes the reading of that segment into memory from the 
OV file. Thus, any segment may, by an explicit call, 
cause any other segment to be loaded for execution. 

PUBLIB The! $PUBLIB control command indicates that 
the Overlay Loader is to create a Public Library using mod­
ules that follow and/or modules from selected libraires. 
The Public Library is biased at the location specified in 
K:PLFWA of the RBM. Each symbol is flagged as Extended, 
Basi c, or Main according to control information on the 
! $PUBLIB card. However, a library may contain routines 
of more than one mode. Such identical definitions of 
different modes are differentiated in the Symbol Table 
(LIBSYM) and are not considered dupl icate. 

When library routines are part of the Public Library, they 
must be reentrant and therefore must use the dynami c tem­
porary stack (specified as the temp field on the! $ROOT 
command) for their temporary storage space. To conserve 
core space when forming the Public Library, the Loader 
will remove any trailing RES from a library routine and wi" 
also change the appropriate word in the call ing sequence 
for M:RES, M:PUSH, or M:PUSHK so that the dynamic 
temporary stack wi" be used for temporary storage space. 

A severity level of 1 is set if unsatisfied references or 
double definitions are encountered during the loading of a 
Public Library, and the library will not be written onto the 
PUBLIB file. When a Public Library is being created, the 
Overlay Loader creates a new Public Library on the RAD 
or disk pack. The Publi c Library just loaded is written 
onto the PUBLIB file in the User Processor area. The total 
length of the Public Library must not exceed 8191 words. 
The Monitor Services Transfer Vector (TVECT) file is read 
from System Processor area, and the Public Library section 
is updated and written onto TVECT. A new Public Library 
Symbol Table is written to LIBSYM file in the System Data 
area. The new LIBSYM is incompatible with the Public 
Library currently in core. A" files are closed and nor­
mal termination through M:TERM takes place. The new 

82 Loader Error Messages 

Public Library is then loaded into core by rebooting the 
RBM. The format of the command is 

! $PUBLIB library mode [, oplb, n] 

where 

mode must be one of the following EBCDIC 
codes: 

Code Mode 

B Basic 

E Extended 

M Main 

A new! $PUB LIB control command must be pro­
vided each time mode is to be changed. 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. 

! $LO, ! $LB, ! $INCLUDE, and! $MD commands are hon­
ored when using! $PUBLIB in the same manner as for the 
! $SEG command. ! $ROOT, ! $TCB, and! $SEG commands 
may not be used in conjunction' with the! $PUBLIB command. 

END The ! $END command is treated exactly like an 
! EOD command. It should be used in place of ! EOO when­
ever multistep job stacks are to be prestored on a RAD file. 
The Utility COpy routine wi" not interpret this com­
mand as end-of-file (EOF). The format of the command is 

LOADER ERROR MESSAGES 

The Overlay Loader program outputs messages on both OC 
and DO concurrently with the load operation. If OC and 
DO are assigned to the same device, dupli cation of mes­
sages on DO is suppressed. If an operator response is re­
quired, the message 

! !BEGIN WAIT 

is written on OC and DO. The operator activates the con­
sole interrupt and keys in either of the following codes. 

Code Meani ng 

S Continue. 

X Abort Overlay Loader and return control 
to RBM. 



The format of the error message where an operator response 
is required is 

2. Response messages, requiring an S or X key-in from 
the operator. 

OLERR xx 

where xx is a two-letter mnemoni c that identifies the error. 
3. Abort messages, upon which the Overlay Loader exits 

via the RBM routine M:ABORT (see Appendix C for 
abort codes, abort messages, and their meanings). 

The types of Overlay Loader messages are as follows: 

1. Warning messages, after which loading 
continues. 

Message 

UBSYM UNDEFINEDt 

OLERR CC !! BEGIN WAIT 

OLERR CS ! !BEGIN WAIT 

OLERR IB ! !BEGIN WAIT 

OLERR ID !! BEG IN WAIT 

OLERR IS ! !BEGIN WAIT 

OLERR SQ ! !BEGIN WAIT 

OLERR TA 

OLERR UR 

TOO MANY DEFSt 

The Overlay Loader error messages are given in Table 18 
below. 

Table 18. Loader Error Messages 

Meaning 

There was no file entry on the System Data area of the RAD or disk pack for 
the UBSYM table. 

A control command card has a format or parameter error. An S response 
causes the next control command to be read in from CC. This may be a 
corrected command to replace the one in error.tt 

There was a checksum error on a binary record. An S response causes the 
record to be reread. 

Illegal binary format (that is, the first word was not 'FF' or '9F') was 
detected. An S response causes the record to be reread. tt 

The indent on the binary module just loaded does not compare with the ident 
specified on the ! $LD command. On an S response, the Loader accepts the 
binary module as is and continues processing. 

Control commands were improperly sequenced in the control command stack. 
An S response causes the next control command to be read. However, if the 
sequence error was due to a SEG command, the Loader aborts.tt 

There was an incorrect sequence number on a binary record. An S response 
causes the record to be reread.tt 

No transfer address was encountered in the loading of the root segment. This 
is only a warning message. The Loader sets a default transfer address as the 
first word of the program. 

There were unsatisfied references in the path. This in only a warning message. 

There were more DEFs in the Public Library than were allocated at system 
generati on. 

tThis message may be written on DO during writing of the Public Library, UBSYM, or TVECT table onto the RAD or 
disk pack. If the alarm occurs, the Public Library was not completely written and will have to be reloaded after the 
error is corrected. 

ttThe Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is reread; 
if they are not repositioned, the next record is read. If the record is on RAD, disk pack, or magnetic tape, the Moni­
tor I/O error recovery procedures positions to the beginning of the next record. However, the WAIT permits the 
taking of dumps, etc., before changing the environment. 

Loader Error Messages 83 



8. RAD ED ITOR 

INTRODUCTION 
The RAD Editor controls RAD and disk pack allocation by 
generating and maintaining directories for all permanent 
fil es. Through control command input, the RAD Editor can 

• Add or delete entries in permanent file directories. 

• Copy data from one fi lei nto another. 

I. Maintain library areas on RADs or disk packs for use 
by the Overlay Loader. 

I 

• Copy an object module contained in a library. 

• Map file allocation. 

• Dump contents of random-access fi les. 

• Save the contents of RADs or disk packs in self­
reloadable form. 

• Clear any permanent area. 

• Skip bad tracks when allocating a file area. 

The RAD Editor generates and maintains directories for the 
following permanent areas: 

• System Processor area (SP) 

• System Library area (SL) 

• System Data area (SD) 

• User Processor area (U P) 

• User Library area (UL) 

• User Data area (UD and Dn) 

Size and location of each permanent area are contained in 
the RBM Master Directory. The RAD Editor allows mapping 
of all areas, including Checkpoint and Background Temp 
areas, and the dumping of all random-access files. 

PERMANENT RAD IDiSK PACK AREA ORGANIZATION 

Every permanent area has its own directory that begins in 
the first sector of the area. The first entry contains the 
address (if any) of the bad tracks within the area. Each 
succeeding directory entry indicates the name, length, 
location, and format of a file in the permanent area. 
Directories are I inked; that is, after a sector of a directory 
is filled, the next available sector within the permanent 
area is allocated as the continuation of the directory. 

84 RAD Editor 

The permanent file directories are software write-protected. 
There are four levels of write protection: no protection, 
write permitted by RBM only, write permitted byforeground, 
and write permitted by background. Write protection for 
files is a user option. Therefore, an SY key-in must be 
initiated before updating or initializing a file directory, 
updating any protected file, or copying data into a pro­
tected file. 

Space with an area is allocated sequentially, and tracks 
designated as bad are skipped at file allocation. The first 
file in the area begins in the second sector and extends 
over an integral number of sectors. Thus, every file be­
gins and ends on a sector boundary. When a directory entry 
(and, effectively, its corresponding file) is deleted, the 
area formerly occupied by the file is left unused. In nor­
mal operation, the RAD Editor makes no attempt to recover 
these unused areas. Therefore, the addition of a file 
may cause overflow of the permanent area although ample 
space may be available. However, RAD squeezing can 
be requested via an Editor !#SQUEEZE command to over­
come this problem. Squeezing recovers the unused stor­
age within a permanent area by regenerating the directory 
and moving files. 

Before any permanent fi Ie can be written (using the 
Monitor routine M:WRITE), space must be allocated for 
the file. This is accomplished by requesting the RAD 
Editor to add a new entry to the designated directory. 
Control commands allow directory entries to be added or 
deleted. 

DATA FILES 

Ordinarily, data is not written in permanentfiles by the RAD 
Editor. Data files are normally written by user programs. 
However, a RAD Editor control command can be used to 
copy data from one random-access file to another. Copied 
files may be temporary or permanent files. 

LIBRARY FILES 

System and User Library files, which are searched by the 
Overlay Loader for external references, are generated and 
maintained by the RAD Editor (the only processor that 
writes in these fi les). 

A library area (either the System Library area or the User 
Library area) contains six files: 

1. Module Directory File (directory of library modules). 

2. EBCDIC Fi Ie (list of all library definiti ons/references). 

3. Extended DEF/REF File (index to extended precision 
definitions/references in EBCDIC file). 



4. Basic DEF/REF File (index to standard precision 
definitions/references in EBCDIC file). 

5. Main DEF/REF File {index to main definitions/ 
references in EBCDIC file}. 

6. Module File {library object modules}. 

These files are generated and maintained from information 
in control commands and object modules placed in the 
library by the RAD Editor. Special commands are supplied 
to allow the addition and deletion of object modules; these 
control commands will cause the six files in the RAD Li­
brary area to be updated. A control command allows an 
object module contained in a library to be copied onto BO. 

Any random-access or sequential-access file {either tem­
porary or permanent} can be dumped on La. 

The RAD Editor can save the contents of a permanent area 
and the RBM bootstrap in a self-reloadable form. The 
saved image conta ins a bootstrap loader, the execution of 
whi ch restores the RBM bootstrap and the permanent area 
on the RAD or disk pack. 

Updating or squeezing of permanent areas and library fi les 
that contain information for real-time programs must not 
occur while the foreground is using these permanent areas 
or fi les. The user must ensure that the RAD Editor is not 
modifying a permanent area whi Ie a foreground program is 
using it. 

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES 

The following algorithms may be used to determine the 
lengths of the six files in a library area: 

The number of granules in the MODIR file is 

MODIR 
6(1 + i} 

g 

where 

n 

is the number of modules to be placed in 
the library (including COMMON, extended­
precision, and single-precision routines). 

g is the granule size in words. 

The number of granules in the EBCDIC file is 

EBCDIC 
4 (1 + d) 

g 

where 

d 

g 

n 

is the number of unique DEFs and REFs in the 
I ibrary {including main, extended-precision, 
and single-precision routines}. 

is the granule size in words. 

The number of granules in the EDFRF fi Ie is 

n 

2 + 2:(2 + r + d } 
1=1 "1 ]. 

EDFRF 
n 9 

where 

n is the number of routines in the extended-
precision library. 

r1 is the number of REFs in the extended-precision 
library. 

d..Q is the number of DEFs in the extended-precision 
library. 

9 is the granule size in words. 

The number of granules in the BDFRF fi Ie is 

n 

BDFRF 

2 + 2:{2 + r
k 

+dk} 
k=l 

where 

n 

n g 

is the number of routines in the single-precision 
library. 

is the number of REFs in the kth library routine 
in the single-precision library. 

dk is the number of DEFs in the kth library routine 
of the single-precision library. 

g is the granule size in words. 

The number of granules in the MDFRF fi Ie is 

n 

2 +2:(2 + r. + d.} 

MDRFR 
j=l J J 

n g 

where 

n is the number of routines in the COMMON library. 

r. is the number of REFs in the jth library routi ne 
j in the COMMON library. 

d. 
J 

g 

is the number of DEFs in the jth library routine 
in the COMMON library. 

is the granule size in words. 

Permanent RAD/Disk Pack Area Organization 85 



The number of granules in the MODULE file is 

MODULE t ~O (c.) 
n i = 1 I 

where 

n is the number of modules in the I ibrary (includ-

g 

c. 
I 

ing COMMON, extended-precision, and single­
precision routines). 

is the granule size in words. 

is the number of record images in the ith library 
routine. 

RAD EDITOR OPERATIONAL LABELS 

The RAD Editor requires the operational labels listed below 
for input/output. These labels are reserved for use by 
the RAD Editor and must not be used on ! #DUMP or 
! #FCOPY commands. 

The following labels must be assigned before requesting the 
RAD Editor: 

Label 

BI 

BO 

CC 

DO 

LO 

OC 

X1-X6 

Explanation 

Object module input to System and User 
Library 

Output of copies of object modules 
from the System and User Librari es. 

Control command input. 

log of control commands, error messages, 
and operator key-ins. 

Maps of directori es and dumps of fi I es. 

Messages to the operator and key-ins 
from the operator. 

Assigned and used internally by RAD 
Editor for RAD maintenance. 

CALLING RAD EDITOR 

The RAD Editor is requested with a ! RADEDIT control com­
mand. The! RADEDIT control command is read from CC 
and causes the root segment of the RAD Editor program to 
be loaded into core memory from the RAD. It has the format 

(!RADEDIT 

Reading an ! EOD from CC causes the RAD Editor program 
to return controJ to the Monitor. The form of the com-
mand is 

CONTROL COMMAND FORMAT 

All RAD Editor control commands are input from CC and 
listed on DO. If CC and DO are assigned to the same de­
vice, the commands are not listed. The general format is 

! #menmonic specification 

where 

# 

identifies the record as a control command. 

indicates that the control command is unique to 
the RAD Editor. 

mnemonic is the code name of a RAD Editor com-
mand immediately following the! # characters. 

specification is a series of required or optional 
parameters unique to the specific command. The 
conventions used in specifying parameters are 
(1) a string of up to five decimal digits, having 
a value less than 32,768, denotes a decimal in­
teger; (2) a string of the form +Xxxx is treated as 
hexadecimal; (3) all other strings are assumed to 
be nonnumeri c. 

One or more blanks must separate the mnemonic and speci­
fication fields, but no blanks may be embedded within a 
field. An empty parameter in the specification fi eld is 
denoted by a comma. However, commas may be omitted 
for empty trai ling parameters. A control command is 
terminated by the first blank after the specification field. 
If the specification field is absent and a comment follows 
the mnemonic field, the command is terminated by a period. 
The first two characters of the mnemonic portion of the 
command are sufficient to define the command; the re­
maining characters may be omitted since they are ignored 
if they are present. 

CONTROL COMMAND REPERTOIRE 

ADD The ! # ADD command adds a new entry to the 
specified permanent file directory. It defines the name, 
write-protection, format, and length of a new file. Adding 
an entry to a directory causes space to be allocated for 

86 Calling RAD Editor/Control Command Format/Control Command Repertoire 



the new file. Once space has been allocated, data can be 
written on the file. The form of the command is 

!#ADD directory, name, file ~record] ['format] 

[ [, write] [, foreground] 

where 

directory specifies a permanent fi Ie directory 
(i. e., not BT or CP). It must be a currently 
defined area. 

name is the file name. The file name is composed 
of three to eight EBCDIC characters. If a fi Ie 
contains a processor that is loaded with a pro­
cessor command (! name), the name of the fi Ie 
must be identi ca I to the one used in the com­
mand. Before using the! #LADD, ! #LREPLACE, 
and! #LDELETE commands (explained below), 
entries for six special files in the library area 
(5 L or UL) must be added. The codes for the 
library files must be one of the following: 

Code File 

MODIR Module Directory 

EBCDIC EBCDIC 

EDFRF Extended DEF/REF 

BDFRF Basic DEF/REF 

MDFRF Main DEF/REF 

MODULE Module 

For data files, name is determined by the name 
parameter. 

file is the number of records in the file, and must 
be either a hexadecimal value or a decimal 
integer. 

record is the maximum number of bytes per logical 
record and may not exceed 32, 168 bytes. "Rec­
ord" may be expressed as either a hexadecimal 
value or a decimal integer: The meaning of "rec­
ord" is determined by the format parameter. The 
record parameter need not be input for I ibrary or 
processor fi I es,t si nce these have predefi ned 
record I engths. For blocked sequential-access 

t For allocating files, if the last character of "directory" 
is P, the file is a processor file by default; if the character 
is D, the file is a data file by default. 

files, logical record size is 120 bytes by default. 
For blocked compressed sequential-access files, 
the logical record size is 80 bytes by default. 
For unblocked sequential-access files, logical 
record size is the sector size of the devi ce by de­
fault. For random-access files, "record" is the 
granule size. The default granule size is the sec­
tor size of the device, and for random fi les, granule 
size is the sector size of the device by defaul t. 

format specifies the structure of the file. It must 
be one of the following codes: 

Code Format 

B Blocked sequential-access file 

C Blocked compressed sequential­
access fil e 

R U nb locked random-access fi Ie 

U Unblocked sequential-access fi Ie 

If omitted, the format parameter is B for data fi I es 
and R for a II library or processor fi I es.t 

write specifies write-protection for the file. It 
must be one of the following codes: 

Code Directory 

B Write permitted from background 

F Write permitted from foreground 

N No write protection 

R Write permitted from RBM only 

If omitted, the write parameter is N for all files. 

foreground is applicable only if "directory" is UP. 
If "foreground" is F, the named fi Ie contai ns a 
resident foreground task. If "foreground" is N or 
omitted, the file does not contain a resident 
foreground task. 

DELETE The! #DELETE command del etes on entry from 
the specifi ed permanent fi Ie directory. The space formerly 
allocated to the file becomes unused. The space is recov­
ered if the fi Ie being deleted is the last file in the area. 
The form of the command is 

(#DELETE di rectory, name 

where 

directory specifies a permanent file directory. It 
must be a currently defined file. 

Control Command Repertoire 87 



name is the file name for the entry to be deleted. 
The fi Ie name is composed of a maximum of eight 
EBCDIC characters, in which at least one char­
acter is al phabeti c. 

FCOPY The! #FCOPY (File Copy) command copies data 
from one random-access file to another. The file copy pro­
cess terminates when an end-of-tape is encountered on 
either the input or the output fi Ie. The form of the com­
mand is 

where 

oplb. is the operational label or FORTRAN device 
'unit number (e.g., F:l09) of a temporary or 
random-access RAD file. The COpy Utility 
Routi ne (see Chapter 10) must be used to copy 
sequential-access files. 

is the input file. 

is the output file. 

LADD The! #LADD (Library Add) command adds an 
object module to the designated library. The object mod­
ule is read from BI, checked for sequence and checksum 
errors, and stored in the Module File within the library. 
From the data in the object module and on the control com­
mand, the information about the module is extracted and 
placed in the Module Directory File (MODIR), the EBCDIC 
File, and one of the three DEF/REF Files (either MDFRF, 
BDFRF, or EDFRF File) as indicated in the library param­
eter. BI may be assigned to any device; if BI is assigned 
to the RAD, it must be a sequential file. The object mod­
ule on BI must be in Standard Sigma 2/3 Object Language. 
Any blank card or binary card on BI thqt contains only zeros 
is ignored. The form of the command is 

!#LADD directory [, identification] ,library 

where 

directory specifies a permanent file directory. 
It must be one of the following codes: 

Code Li brary 

SL System 

UL User 

88 Control Command Repertoire 

identifi cation is the program name located in the 
start module item of the object module on BI. 
Within a permanent area (SL or UL), each object 
module must have a unique "identification". If 
the identifi cation parameter is omitted, all object 
modules on BI will be added to the library up to, 
but not including, the file mark or EOD on BI. 

library specifies the target library. It must be one 
of the following codes: 

Code 

B 

E 

Library 

Basic Library (single-precision 
math library routines) 

Extended Library (extended­
precision math library routines) 

M Main Library (nonmath library 
routines) 

LREPLACE The! #LREPLACE (Library Replace) command 
replaces an object module of the same identification in the 
designated library. The object module is read from BI and 
checked for sequence checksum errors. The object module 
on BI must be in Standard Sigma 2/3 Object Language. Any 
blank card or binary card (on BI) that contains only zeros 
is ignored. The form of the command is 

! #LREPLACE directory, identifi cation, library 

where 

directory specifies a permanent file directory. It 
must be one of the following: 

Code Library 

SL System 

UL User 

identification is the program name located in the 
start module item of the object modul e on BI. 
The object module on BI replaces the module in 
the library having the same identifi cation. 

library specifies the target library. It must be 
one of the following codes: 

Code Library 

B Basic 

E Extended 

M Main 



LDELETE The! #LDELETE (library Del ete) command 
deletes an object module from the designated library. The 
form of the command is 

! $LDELETE directory, identification, library 

where 

directory specifies a permanent file directory. It 
must be one of the following: 

Code library 

SL System 

Ul User 

identifi cation is the program name of the object 
module to be deleted. 

library specifies the target library. It must be 
one of the following codes: 

Code library 

B Basic 

E Extended 

M Main 

LCOPY The! #LCOPY (library Copy) command copies 
an object module from the designated library onto the BO 
device. The form of the command is 

! #lCOPY directory, identification 

where 

directory specifies a permanent fi Ie directory. It 
must be one of the following: 

Code library 

Sl System 

Ul User 

identifi cation is the program name (located in the 
start module item) of the object module to be 
copied onto the BO devi ceo 

LSq,UEEZE The! $lSQUEEZE (library Squeeze) com-
mand wi II squeeze designated library areas. Unused space 
is recovered by regenerating the directory files and 

squeezing (compacting) the module fi Ie. The form of the 
command is 

! #lSQUEEZE directory 

where directory specifies either User library (Ul) or the 
System library (Sl). 

MAP The ! # MAP command causes the specified direc-
tories to be mapped on La. For each permanent RAD area, 
the beginning and ending RAD addresses for the area are 
mapped. For each file, the contents of the directory entry 
describing the file are printed. This information includes 
name, format, write-protection, foreground task indicator, 
beginning address, EOF address, and EaT address for each 
file. Maps of library directories include program name, 
library designation (Main, Basic, or Extended), and DEFs 
and REFs for each object module. The form of the com­
mand is 

where 

directory. specifies a file directory. It must be a 
I 

currently defined area. As many as eight direc-
tories may be input. 

If no directory parameter is included, all cur­
rently defined directories are mapped. 

DUMP The ! #DUMP command dumps a random-access 
file on La. The file is dumped one granule at a time. 
The DUMP Util ity Routine (see Chapter 9) may also be used 
to dump sequential-access files. DUMP represents each 
word as a four-character hexadecimal number. It dumps 
each granule of the file starting at BOT (if starting address 
is not specified) and ending at EaT or after the specified 
number of granules has been dumped. The form of the com­
mand is 

! #DUMP oplb [, number 1] [, number 2] 

where 

oplb is the operational label or FORTRAN devi ce 
unit number (e. g., F: 109) of a temporary, check­
point, or permanent RAD file to be dumped. 

number 1 is the starting granule address in decimal 
or hexadeci ma I. 

Control Command Repertoire 89 



number 2 is the number (decimal) of granules to be 
dumped. If the number parameter is omitted, the 
file is dumped up to EOT. 

SAVE The !#SAVE command saves the contents of the 
RAD for subsequent restoration. The image of the desig­
nated permanent area (including both directory and files) 
and the RBM bootstrap are written on magnetic tape BO in 
a self-reloadable format; the BO output contains a bootstrap 
loader followed by the RAD images of the RBM bootstrap 
and the designated area. Execution of the bootstrap loader 
causes the RAD image to be read into memory and restored 
onto the RAD without RBM control; after restoration, the 
RBM bootstrap is executed. The BO output can also be re­
stored on the RAD via the! #RESTORE command (explained 
below). The form of the command is 

where 

directoryi 
saved. 

specifies the permanent RAD area to be 
It must be a currently defined area. 

If no directory parameter is included, all current 
permanent file areas are saved. A request to 
save CP or BT is ignored. 

RESTORE The ! #RESTORE command restores the perman­
ent areas saved via a ! #SAVE command. It reads the output 
of the ! #SAVE command from BI and bypasses the bootstrap 
loader. The form of the command is 

(#RESTORE 

SQUEEZE The ! #SQUEEZE command compacts the desig-
nated fi I e areas. Unused space is regained by regenerating 
the dictionaries and moving files. The form of the com­
mand is 

where 

diredorYi specifies the permanent RAD area to be 
compacted. It must be a currently defined area. 

If no directory parameter is included, all current 
permanent areas are compacted. A request to 
squeeze CP or BT is ignored. 

90 RAD Editor Error Messages 

CLEAR The! #CLEAR command zeros out the specified 
RAD area or file. The form of the command is 

( HC LEAR directory [, fi Ie] 

where 

directory specifies a permanent area. It must be a 
currently defined area. 

file is a file name, within the area specified by 
"di rectory" which is to be cleared. The re-
mainder of the area will be unchanged. If "file" 
is omitted, the entire area is cleared. Note 
that only one area may be cleared with each 
! #CLEAR command. 

TRACKS The !#TRACKS command will update the list of 
bad tracks for each RAD or disk pack device. This 
list resides in the first sector of each area. The source 
for this update is the existing Alternate Track Pool, 
which is modified via the BT key-in. The form of the 
command is 

(HTRACKS 

END The ! #END command is used exactly like the! EOD 
command; that is, it transfers control from the RAD Editor 
to the Monitor. The form of the command is 

This command should be used in place of ! EOD whenever 
multistep job stacks are to be prestored on a file. The 
Utility COpy routine will not interpret this command as 
an EOF. 

RAD EDITOR MESSAGES 

The RAD Editor program outputs error messages on OC and 
DO. If OC and DO are assigned to the same device, 
dupli cation of messages on DO is suppressed. If an operator 
response is requ ired, the message 

! !BEGIN WAIT 

is written on OC and DO. The operator activates the con­
sole interrupt and keys in either of the following codes. 

Code Meaning 

s Continue. 

x Abort RAD Editor and return control to RBM. 



To abort, the RAD Editor calls the Background Abort The error messages output by the RAD Editor and their mean­
ings are given in Table 19. The messages in Table 20 are 
written on the keyboard/printer during RAD restoration via 
the bootstrap loader produced by SAVE. Any error output 
causes the computer to go into a wait state after writing the 
appropriate message. 

routine, M:ABORT. If the RAD Editor aborts because of 
an irrecoverable input/output error, the code in the abort 
message is the operation label of the device in error. If 
the abort is due to an X response by the operator or some 
error condition, the code is IREI. 

Table 19. RAD Editor Error Messages 

Message Meaning 

AREA OVERFLOW Allocation of the amount of storage indicated by the file parameter on the ! # ADD command 
would cause the permanent area indicated by the directory parameter to overflow. RAD 
Editor reads the next command from CC. 

ASSIGN ERR The RAD Editor was unable to assign an operational label to a file because the number of 
available RAD or disk pack device-file numbers is insufficient. RAD Editor aborts. 

BOT oplb An unexpected beginning-of-tape has been encountered on the devi ce havi ng the opera-
tional label oplb. RAD Editor aborts. 

CKSM ERR The last record in the object module being read from BI has a checksum error. If the job 
is ATTENDed, operator response is solicited; an operator response of S causes the Editor 
to read the next record from B I. RAD Edi tor aborts. 

CORE OVERFLOW The last command cannot be processed for lack of background space. The RAD Editor 
aborts. 

DUP IDENT The last object module read from BI cannot be added to the library with a !#LADD 
command because it is already in the library. RAD Editor aborts. 

DUPLICATE NAME An attempt was made to add a file whose name already exists for this area. The RAD 
Editor reads the next command from CC. 

EDIT ERR Data on the RAD or disk pack has been rendered invalid. RAD Editor aborts. 

EOF oplb An unexpected end-of-file was encountered on the device having the operational label 
oplb. RAD Editor aborts. 

EOF READ FILE An EOF has been encountered on the input fi Ie. Copyi ng wi" continue until EaT on 
the Read file or EaT on the Write file is encountered. 

EaT oplb An unexpected end-of-tape was encountered on the device having the operational label 
oplb. RAD Editor aborts. 

EaT WRITE FILE An unexpected EaT occurred on the file currently receiving data. This is a warning to 
the user that the output file is smaller than the input file (as in !#FCOPY) but that the 
data a I ready wri tten is correct. The RAD Editor reads the next command from CC. 

RAD Editor Error Messages 91 



Table 19. RAD Editor Error Messages (cont.) 

Message Meaning 

ERR I/O oplb A calling sequence error occurred for input/output on the device having the operational 
label oplb. RAD Editor aborts. 

FILE OFLO A file in the library area has overflowed during execution of a ! #LADD command. If 
operator response is S, the next command is read. 

ILLEG BIN An illegal binary record (first byte not X'FF' or X'9F') has been read with an object 
module on BI. RAD Editor aborts. 

INV CTRL Control command is invalid. It cannot be recognized by RAD Editor or has incorrect 
syntax. If operator response is S, the next command is read. 

INV I/O OP oplb An inval id input/output operation was attempted on the device having the operational 
label oplb. RAD Editor aborts. 

LENGTH ERR oplb A record of incorrect length was read from or written on the devi ce having the operational 
label oplb. RAD Editor aborts. 

LOAD ERR The RAD Editor overlay cannot be loaded. RAD Editor aborts. 

NO BLOCK oplb No blocking buffer is available for the file assigned to the operational label oplb. 
RAD Editor aborts. 

NO IDENT The object module on BI does not have the same "identification" in the start module 
item as indicated on the! #LADD command, the identification in start module item is 
blank, or there is no object module on B1. RAD Editor aborts. 

NONEXISTENT FILE An attempt was made to delete a file whose name does not exist in the specified area. 
The RAD Editor reads the next command from CC. 

PARAM ERR Control command has a parameter error. A parameter has incorrect content, has been 
omitted, or is not consistent with the other parameters. A parameter error also occurs for 
duplicate Editor commands; that is, when on already-existing file is created via the t#ADD 
command or when a nonexisting file is deleted via the! #DE LETE command. If operator 
response is S, the next command is read. 

RE ERR RAD could not be restored completely because either BI input is out of sequence, or perma-
nent RAD areas in the Master Directory do not agree with BI input. RAD Edi tor aborts. 

SEQ ERR The lost record in the object module being read from BI has a sequence error. If the job 
is attended, on operator response of S causes the Editor to read the next record from BI. 
If the job is not attended, RAD Editor aborts. 

SZ ERR The object module on BI cannot be placed in the library because it has more than 61 ex-
ternal definitions and references. RAD Editor aborts. 

92 RAD Editor Error Messages 



Table 19. RAD Editor Error Messages (cont.) 

Message Meaning 

UNPROTECT RAD The RAD or disk pack is write-protected. RAD Editor continues to attempt writing. The 
operator should interrupt and key in SY, reset the appropriate RAD protection switches, 
or interrupt and key in X to abort, whichever h appropriate. 

UNRECOVER I/O oplb An irrecoverable I/O error occurred on the device assigned to the operational label 
oplb. RAD Editor aborts. 

WRITE PRO oplb The magnetic tape assigned to the operational label oplb is write-protected. RAD Editor 
aborts. 

Table 20. RAD Restoration Messages 

Message Meaning 

CHCK WRITE ERR A check write error occurred (that is, data recorded on the RAD or disk pack could not 
be verified). 

CHECKSUM ERR The last record image read has a checksum error. 

RAD WRITE PRO The RAD or disk pack is write-protected. 

READ ERR The last record being read had a read error. 

RESTORED VXX RBM version XX has been restored on the RAD. 

SEQUENCE ERR The record images for restoration are out of sequence. 

RAD Editor Error Messages 93 



9. UTILITY 

INTRODUCTION 

The Uti I i ty program operates in the background under the 
Real-Time Batch Monitor. It contains routines that: 

• 

• 

• 

• 

• 

Copy variable-length binary or EBCDIC records from 
one medium to another (Copy). 

Dump records onto an output device in either hexa­
decimal or EBCDIC format (Dumpt). 

Generate or update fi I es that contai n Standard Si gma 
Object language modules (Object Module Editor). 

Generate or update symbol i c fi I es (paper or magneti c) 
that contain source data (Record Editortt ). 

Edit card images by sequence number (Sequence Editor). 

Routines in the Utility program are device-independent. 
Uti lity handles any blocked or unblocked, sequential-access 
RAD file. Use of a sequential-access RAD file is similar to 
that of a magnetic tape, as it has a beginning-of-tape, an 
end-of-file (if one has been written), and an end-of-tape. 
Note, however, that a sequential-access RAD file cannot 
be forward-spaced or backspaced over more than one fi Ie 
mark. A rewound sequential-access RAD fj I e is positioned 
at beginning-of-tape. For both blocked and unblocked 
files, a record skip is a logical record skip. 

UTILITY PROGRAM ORGANIZATION 

The Utility program consists of two major sections: the Util­
ity Program Control routine (always resident when the Utility 
program is operating), and the currently operating Utility 
subroutine. The Utility Program Control routine contains 
four interdependent elements: 

1. The Program Executive, which initial izes the program 
(upon entry from RBM), interprets the !UT1 UTY con­
trol command (explained in "Calling Utility"), exer­
cises control over the flow of control commands, handles 
normal and abort exits to the Monitor, and performs 
all I/O checking for the Utility program. 

2. The Source Input Interpreter, which reads and scans 
Uti lity control commands for the Control Function Pro­
cessor and the current Utility subroutine. 

3. The Control Function Processor, which executes con­
trol functi on commands common to all Uti Ii ty subrouti nes. 

t Dump is known as Paper Tape Dump in the BCM system. 

tt Record Editor is known as Paper Tape Editor in the BCM 
system. 

94 Utility 

4. The Operator Communication routine, which outputs 
messages to OC and DO and receives key-in responses. 

UTI UTY EXECUTIVE PROGRAM 

When RBM reads a !UTI UTY control command control is 
transferred to the Program Executive routine. The !UT1 UTY 
control command is then scanned for parameters. If the 
name parameter is omitted (see "Calling Utility" below), 
it is assumed that only the Control Function Processor will 
be used. Utility control commands are read from the source 
input device (SI). 

If a specific Uti I ity subroutine is requested, the Program 
Executive verifies that the subroutine is in core storage; if 
not, an error message is written and an exit to RBM is taken, 
terminating the background operation. If the subroutine is 
present, initial ization of tables and flags occurs. 

The Program Executi ve then transfers control to the requested 
Uti I i ty subrouti nee The Uti I i ty subrouti ne uses the Source 
Input Interpreter to read all commands, and uses the Control 
Functi on Processor to execute control functi ons. All other 
control commands are interpreted and executed by the Uti-
I ity subroutine itself. 

SOURCE INPUT INTERPRETER 

The Source Input Interpreter, which is called by the Program 
Executi ve routi ne, processes a II contro I commands that are 
read by the Utility program. Utility control commands are 
input from the SI device and listed on the DO device as 
they are interpreted. 

Upon reading a command, the Source Input Interpreter de­
termines whether the command is valid. If the syntax for a 
command is invalid, the following message is written on OC 
and DO: 

INV CTl 
! IUKEYIN 

The operator response, either an S to continue or an X to 
abort, determines whether or not the Utility program 
continues. 

If the response is S, the Source Input Interpreter reads the 
next control command from SI. If the command is val id, it 
may be interpreted and executed either by the Utility sub­
routine or by the Control Function Processor. 

CONTROL FUNCTION PROCESSOR 

The Control Functi on Processor interprets and executes com­
mands that are common to a II Uti I ity subrouti nes. If any of 



the control commands interpreted and executed by the 
Control Function Processor contains an invalid operational 
label, the following message is output: 

INV OPLB 
!! UKEYIN 

The operator response, either an S to continue or an X to 
abort, determines whether or not the Utility program 
continues. 

OPERATOR COMMUNICATION ROUTINE 

All messages to the operator are written on the OC device 
by the Operator Communication routine. 

If a response is required from the operator, the Operator 
Communication routine types the following message: 

! UKEYIN 

The operator then keys in either an S to continue, or an X 
to abort. 

If the response is 5, a return is made to the calling routine. 
If the operator keys in an invalid response (not 5 or X), the 
following message is written on OC and DO. 

KEY ERR 
!! UKEYIN 

The operator then types in the correct response. 

INPUT/OUTPUT ERROR MESSAGES 

The Program Control routine performs all input/output 
checking for the Util ity program. Messages regardi ng input/ 
output errors are written on both the OC and DO devi ces. 

CONTROL ROUTINE OPERATIONAL lABELS 

Four operational labels are reserved for the Program Control 
routine. Their use is restricted to the functions below; they 
may not be used in place of the labels required by the vari­
ous Uti I ity subroutines explained later. 

Label Explanation 

51 

DO 

Device for RBM control command input, Utility 
program control commands, and various modifica­
tion source inputs. 

Device for I isting of control commands (as they 
are interpreted), messages, error conditions, op­
erator responses, etc. DO provides a permanent 
log of the control command flow. This is the only 
operational label for the Program Control routine 
that can be assigned to device-fj Ie number 0 

Label 

DO 
(cont. ) 

OC 

X5 

Explanation 

(i. e., suppressed). If OC and DO are assi gned 
to the same devi ce, dupl i cation of messages is 
suppressed. 

Device for messages to the operator, or key-in re­
sponses from the operator (always via the keyboard/ 
printer). 

Temporary RAD fi I e used for prestoring commands 
read from 51. 

Utility functions are generally executed dynamically; that 
is, control commands are interpreted and executed as they 
are read. However, when several operational labels are 
assigned to the same device as 51, it is impractical to exe­
cute dynamically. In this case, commands must be pre­
stored to avoid confusion with data from that device. This 
decision to prestore is made by the Util ity program with one 
exception: when the ! UTI LITY command has no name pa­
rameter, the! *PRE5TORE control command allows the user 
the option of prestoring 51 input until an EOD card image 
is encountered. For RBM Utilities, prestored commands are 
written on a temporary RAD fi I e (using operationa I label X5) 
and read from the RAD for interpretation and execution. 

CALLING UTILITY 

The Utility program is requested via a !UTILITYcontrol com­
mand, which causes the root segment of the Utility program 
to be loaded into core memory from the RAD. The! UTI LITY 
control command has the format 

! UTI LITY[name][, parameter] 

where 

name is the name of a Uti I ity routi ne or may be 
omitted. It may be any of the following: 

COpy (Copy) 

DUMP (Dump) 

OMEDIT (Object Module Editor) 

RECEDIT (Record Editor) 

5EQEDIT (5equence Editor) 

parameter represents the series of opti ona I param-
eters that are unique to each Utility routine. Pa­
rameters are fully explained in the description of 
the individual routines. 

When RBM reads a ! UTI LITY command, it loads the Program 
Control routine (root segment) from the RAD and transfers 
control to the Program Executive which controls the operation 

Calling Utility 95 



of the Utility program. The Executive first scans the 
I UTI LITY control command parameters. If the name pa­
rameter is omitted, the Executive assumes that the control 
commands that follow use the Control Function Processor 
only. If a specific Utility routine is referenced with the 
name parameter, the Program Executive checks the name 
for validity. If the name is invalid, the message 

UT NT RES 

(Utility not resident) is written on OC and DO and the 
Utility program aborts. If the name is valid, the overlay 
segment containing the Utility routine is loaded from the 
RAD, flags are initialized, and control is transferred to the 
named routine. 

When the Executive or Program Control routine encounters 
an lEaD card image from SI, it terminates processing. The 
form of the lEaD command is 

Th i s causes the Uti I i ty program to transfer contro I back to 
RBM. 

CONTROL COMMAND FORMAT 

All Utility program control commands are input from SI and 
are listed on the DO device as they are interpreted. The 
general format is 

!*mnemonic specification 

where 

* 

identifies the record as a control command. 

indicates that the control command is unique to 
the Utility program. 

mnemonic is the code name of a Utility command 
and begins immediately following the I * characters. 

specification is a series of parameters unique to 
the specific command. The conventions used in 
specifying parameters are (1) a string of up to five 
decimal digits having a value less than 32,768 
denotes a decimal integer and (2) a string con­
taining more than five characters is always assumed 
to be EBCDIC, regardless of content. 

One or more blanks separate the mnemonic and specifica­
tion fields, but no blanks may be embedded within a field. 
A control command is terminated by the first blank after the 
specification field; or, if the specification field is absent 
and a command follows the mnemonic field, the command is 
terminated by a period. No control command record may 
contain more than 80 characters. The first two characters 

96 Control Command Format/Control Function Commands 

of the mnemonic portion of the command are sufficient to 
define a control command; the remaining characters may be 
omitted, since they are ignored when present. 

CONTROL FUNCTION COMMANDS 

The Control Function Processor interprets and executes con­
trol commands that are common to all Uti lity subroutines. 
These control function commands are given below. Unl ess 
otherwise noted, "oplb" is the operational label of the de­
vice, "number" is the number of fi Ie marks or records to 
skip (if omitted, the number is assumed to be 1), and "de­
vice" is the device type and physical device number. 

FBACK The! *FBACK command backspaces a magnetic 
tape over a specified number of file marks or a sequential­
access RAD file to beginning-of-tape (BOT). The form of 
the command is 

( *FBACK oplbL number] 

FSKIP The ! *FS KI P command spaces a magnetic tape 
forward over a specified number of fjlemarksorasequential­
access RAD file over its end-of-file. The form of the com­
mand is 

( *FSKIP oplb[, number] 

MESSAGE The! *MESSAGE command writes messages to 
the operator on the OC and the DO devi ces. The form of 
the command is 

(*MESSAGE message 

where message is any EBCDIC character string up to a full 
card image. 

The format of the output is 

! *MESSAGE message 

PAUSE The! *PAUSE command causes a message to be 
written on the OC and DO device followed by a wait for 
the operator's response. The form of the command is 

('*PAUSE message 

where message is any EBCDIC character string up to a full 
card image. 

The format of the output is 

I *PAUSE message 
IIUKEYIN 



PRESTORE The ! *PRESTORE command causes all control 
commands to be read from the 51 device, but not to be in­
terpreted or executed until an !EOD is read. The prestored 
commands are written on a temporary RAD file (using opera­
tional label X5) 'and are read sequentially from the RAD. 
(The prestore mode is set automatically when a name param­
eter appears on the !UTILITY command and one or more 
operational labels have been assigned to the same device 
as 51.) The! *PRESTORE control command must immediately 
follow the! UTI LITY control command and must precede any 
other control commands for the Util ity program. The form 
of the command is 

(' *PRESTORE 

REWIND The ! *REWIN D command causes the specified 
magnetic tape or sequential-access RAD file to be rewound. 
The form of the command is 

(*REWIND oplb 

RBACK The! *RBACK command backspaces a magnetic 
tape or sequential-access RAD file over a specified number 
of records. The form of the command is 

( *RBACK oplbL number] 

If oplb is assigned to a blocked sequential-access RAD file, 
the number parameter is the number of logical records to be 
skipped. 

RSKIP The !*RSKIP command spaces forward the indi-
cated magnetic tape or sequential-access RAD file over the 
specified number of records. The form of the command is 

i*SKIP oplbL number] 

If oplb is assigned to a blocked sequential-access RAD file, 
the number parameter is the number of logical records to 
skip. 

UNLOAD The! *UNLOAD command unloads a magnetic 
tape or closes a sequential-access RAD file. The form of 
the command is 

('*UNLOAD oplb 

END The! *END command is treated exactly like an 
!EOD; that is, transfers control from Utility to the Monitor. 
This command should be used in place of !EOD whenever 
multiactivity job stacks are to be prestored on a RAD file. 

This command will not be interpreted as an EOF when read 
from UI. The form of the command is 

(*END 

WEOF The! *WEOF command writes a file mark, EOD, 
or end-of-file pointer if appropriate to the device. The 
form of the command is 

(' *WEOF oplb 

ASSIGN The! *ASSIGN command allows a Uti lity user 
to assign any operational label to any other background 
operational label, device-file number, or RAD file. The 
form of the command is 

! *ASSIGN 

where 

DFN 

oplb 
DFN 
fi le,area 

is a de vi ce-fi I e number. 

file is a RAD file name. 

area is the RAD area within which the RAD file is 
defined. 

COpy ROUTINE 

COpy provides the ability to copy variable-length binary 
or EBCDIC records from cards, paper tape, magnetic tape, 
keyboard/printer, and sequential-access RAD file (blocked, 
unblocked, or compressed) to cards, paper tape, magnetic 
tape, line printer, keyboard/printer, and sequential-access 
RAD file (blocked, unblocked, or compressed). Using con­
trol functions of the Control Functi on Processor, records and 
fil es can be skipped. Output generated by the COpy rou­
tine can be verified. If the binary mode is requested for 
either copying or verifying, file marks are recognized for 
a magnetic tape or sequential-access RAD file. 

Since COPY uses RBM routines M:READ and M:WRITE for 
all reading and writing, files copied with the COpy routine 
will be treated according to the default conventions of the 
FORM, size, and BIN parameters of the! *COPY command. 
Deviation from inherent conventions is accomplished via 
FORM, size, and BI N parameter options. 

For records being copied to the card punch, records con­
taining a first byte of X'1C, X'3C', X'9F', X'BF', X'DF', 
X'FF', X100I, or X'781 are always punched in the binary 
mode; all other records are punched in EBCDIC. For all 
other devices, the distinction between binary and EBCDIC 
modes is meaningless because records are copied directly 

COpy Routine 97 



without translation. Therefore, attempting to copy binary 
data to an EBCDIC devi ce wi II resul t in meaningless output. 

For paper tape, if BIN and size are notspecified, the length 
of each binary record (first byte of X'l C, X'3C', X'9F', 
X'BF', X'DF', X'FF', X'OO', or X'78') is always 120 bytes. 
When M:READ reads EBCDIC records from paper tape, it 
transmits only the number of bytes specified by the calling 
sequence to memory. Ordinari Iy, the COpy routine assumes 
that paper tape EBCDIC records have a byte count of 120. 
The BIN control card allowsthe user tooverride the standard 
count. 

By assigning the X4 oplb to a RAD file or paper tape device 
before the f *OPlB5 command is read, records copied from 
UI are adjusted to a 80- or 120-byte length, depending upon 
the contents of the first byte. 

When copying or verifying a 9-track magnetic tape to a 
7-track magnetic tape, UI and X4 should be assigned to the 
9T magnetic tape device. 

If a record copied to the line printer or keyboard/printer 
contains more than 132 characters, only the first 132 are 
printed. Normally, the first character of the record is 
printed and single spacing is forced. Therefore, even if the 
first character is intended for format control, it will be 
pri nted as the fi rst character of the pri nt line in the norma I 
mode. If the format option is specified, the first character 
is interpreted as a format control character and is not 
printed. 

The BI N option should only be used to copy nonstandard 
binary records. Since no editing is done when a binary 
read operation is specified, N l, EOM, and I- are not inter­
preted as editing characters. All records are copied ona 
byte-for-byte basis {including leading and trailing blanks}. 
EOD is not recognized as a file mark. Therefore, a request 
to copy/verify one or more files causes input to terminate 
only when the input device goes into manual mode. A re­
quest to copy/verify one or more times {when the input de­
vice is magnetic tape} is processed normally, since file 
marks are recognized. 

COpy OPERATIONAL LABELS 

The following operational labels are used by the COpy 
routine in addition to the Utility subsystem operational 
labels: 

Device 

UI Input device 

X4 Verify devi ce 

Other operational labels may be used by COpy {at the op­
tion of the user} to specify the input and output devices for 
verifying and copying, respectively. 

98 COPY Routine 

COpy OPERATING CHARACTERISTICS 

The COpy routine checks whether input/output operational 
labels are assigned to the same physical device. If so, all 
control commands are read from the 51 dev; ce and stored in 
memory prior to interpretation of the control commands to 
begin copying. When the 51 and any input or output opera­
tional labels are assigned to the same physi cal device, the 
message 

lD INPUT 

f fUKEYIN 

is written on the OC and DO device, and the Operator 
Communication routine waits for an operator response. The 
operator should load the input at this point and key in an 
5 response to initiate the actual copy procedure. 

If the operational labels are not assigned to the same physi­
cal devices, interpretation of control commands takes place 
as they are read from 51, and copying begins immediately 
without any message being output on the OC device. 

CALLING COpy 

The COpy routine is requested with the control command 

fUTILITY COPYL CORE] 

where CORE specifies that, for the first ! *COPY or 
f *VERIFY command, the records from the input device are 
stored in core in addition to being copied or verified. For 
subsequent! *COPY or ! *VERIFY commands, these records 
in core, rather than those on the input device, are used as 
the input source. 

After interpretation of the! UTI UTY control command, con­
trol is transferred to the COpy routine which interprets the 
control commands listed below. 

COpy CONTROL COMMANDS 

OPLBS The! *OPLB5 command identifies the operational 
labels of output devices to be used in COpy requests and 
input for comporision for VERIFY requests, and must follow 
the fUTILITY command. The input for COpy operations is 
read from UI. For VERIFY operations, X4 is read. UI may 
not be used as a parameter for COpy operations; nor are 
UI and X4 allowed as parameters for VERIFY operations. 
An ! *OPlBS command should follow ! *A5SIGN commands 
that change the device type of UI or X4. Operational 



label s may be assigned to any device except a random-access 
RAD file. Assignments remain in effect until a new! *OPLBS 
command is read. The form of the command is 

! *OPLBS oplb
1 
[, oplb

2 
... ] [, oplb n] 

where oplbi is the optional label for an output device for 
subsequent! *COPY commands, or an input device for sub­
sequent! *YERIFY control commands. The oplb parameter 
may not be assigned to device-file number 0 (n S 8). 

COpy The! *COPY command causes records from the 
input device (UI) to be copied on the output device (speci­
fi ed in the ! *0 PLBS command) unti I the requested number 
of !EODs or fi Ie marks has been read and copied, or unti I 
the specified number of records has been copied. The form 
of the command is 

! *COPY type[, number] L FORM] [, size] [, BIN] 

where 

type is R if the number parameter refers to records, 
or F if the number parameter refers to files. 

number has different meanings, depending upon 
the type parameter that precedes it. If the type 
parameter is R, "number ll is the number of records 
to be copi ed, but refers to I ogi ca I records for a 
blocked, sequential-access file. If IItype ll is F, 
IInumberll is the number of files to be copied, or 
is ALL, indicating that all files should be copied 
until two consecutive EOD images or fi Ie marks 
are copied. If II type II is F and any of the input/ 
output devices is a sequential-access RAD file, 
IInumber" is 1 or it is omitted. If the number pa­
rameter is omitted, one record or file is copied. 

FORM applies only if data is being copied onto 
the line pri nter or keyboard/printer. If the FORM 
parameter is omitted, single spacing of printed 
output is the format. If FORM is used, the first 
character of each record is used for format control 
and is not pri nted. 

size specifies the maximum number of bytes in each 
record. If data is being copied to or from a 
sequential-access RAD file, IIsize ll is the maximum 
logical record size and must be an even number. 
If IIsizellis omitted, all records are read and written 
in the standard record size (120 bytes). An !EOD 
card will not be recognized by M:WRITE if an odd 
byte count is specified or if a byte count of less 
than four bytes is specified. 

BIN if omitted, mode (BIN or EBCDIC) is determined 
according to byte 1 of the record. If present, all 
copying is done in binary, either with the count 
specified in IIsize ll or the standard record size 
(120 bytes) by default. 

VERIFY The ! *VERIFY command requests comparison of 
data on the X4 device with data in core (CORE option) or 
with data from devices specified in the! *OPLBS control 
command. The form of the command is 

! *VERIFY type[, number] [, size] [, BIN1 

The parameters are defined as for the ! *COPY control 
command. 

Note: UI must not be used on an ! *OPLB command with 
VERIFY. 

Before the ! *VERJFY control command is issued, it is assumed 
that all files have been repositioned, if necessary, by use 
of !*REWIND and other file positioning control commands 
(described in IIControl Function Commands II ). The entire 
verification process is completed when the number of files 
or records for verification has been compared. 

DUMP ROUTINE 

The DUMP routine is used to dump records or files onto an 
output device in either hexadecimal or EBCDIC format. 

DUMP uses M:READ and M:WRITE for all input/output. If 
no mode or the EBCDIC mode is specified for dumping, all 
records are dumped according to the contents of the fi rst byte 
of each record. Any record having a first byte of X'1C', 
X'3C, X'9F', X'BF', X'DF', X'FF, X100I, or X' 781 is 
assumed to be a binary record containing 120 bytes, and is 
dumped with each data word being represented in EBCDIC 
as a 4-digit hexadecimal number. Any record that does not 
contain one of these characters in its first byte is assumed 
to be in EBCDIC and is dumped as such. 

The user has the option to specify the byte count for paper 
tape record input, since M:READ pads all EBCDIC records 
with trai I ing blanks so that they appear to be fixed length 
in memory. 

The BI N option for dumping should be used to dump non­
standard bi nary records. The opti on causes a II records that 
are to be dumped to be read in binary and dumped with each 
data word represented in EBCDIC as a four-character hexa­
decimal number. Since no editing is done when a binary 
read is specified, NL, EOM, and ¢ are not interpreted as 
editing characters. ! EOD is recognized as a fi Ie mark. 

DUMP Routine 99 



DUMP OPERATIONAL LABELS 

The DUMP routine uses the following operational labels: 

Label Explanation 

SI Device for input commands. 

La Output device for dumping. 

Ul Input device for dumping, unless some other 
input devi ce is specified. 

DUMP OPERATING CHARACTERISTICS 

If both SI and DUMP input are assigned to the same device, 
all of the control commands on the SI device are read and 
stored in memory before interpretation of the commands and 
dumping of the input tape begins. When this occurs, the 
message 

LD I N PUT UI, ddnn 

! !UKEYIN 

is written on the OC and DO device. The operator mounts 
the input tape and keys in an S response- to continue. 

If SI and the tape device to be dumped are not assigned to 
the same device, no message is written and control com­
mands are interpreted as they are read. The DUMP control 
commands are then listed on DO and dumping is performed. 

CALLING DUMP 

The DUMP routine is requested with the control command 

(!UTIUTY DUMP[,opfb] 

where oplb is the operational label of the input devoce. If 
oplb is omitted, the operational label is assumed to be UI. 

DUM P CONTROL COMMANDS 

DUMP The! *DUMP command causes records to be read 
from UI and written on the La device in the specified mode 
until an !EOD or fil e mark is read, or the specified number 
of records has been read. The form of the command is 

! *DUMP[number] [, mode] [, size] 

where 

number is a decimal integer. Only the specified 
number of records is dumped. If "number" is 
omitted, the file is dumped to an EOF or file mark. 

100 Object Module Editor Routine 

If "number" is ALL, the dump is performed to 
double file marks or !EODs. If the dump lIinput" 
(UI) is assigned to a sequential-access RAD file, 
the number parameter must be 1. 

mode indicates that a" records on Ul, regardless 
of the content of the first byte of each record, are 
written on the La device in the mode specified. 
"Mode" is HEX for hexadecimal and EBCDIC for 
EBCDIC. If omitted, EBCDIC is assumed. 

size specifies the maximum number of bytes to be 
read in each record. If the dump "input" is a 
sequential-access RAD fi Ie, the size parameter 
must be an even number. Fora blocked sequential­
access file, "size" is the maximum logical record 
size. If it is omitted, the standard record size is used. 

OBJECT MODULE EDITOR ROUTINE 

The Object Module Editor is designed to maintain files con­
taining sets of Standard Sigma 2/3 Object Language mod­
ules. It generates or updates files by inserting and deleting 
object modules according to the program name in the start 
module item for each module. For each output file written, 
a I ist of module names is printed in the order of their 
appearance. 

Object Module Editor is also used to list files containing 
object modules and to verify that the input object records 
contain no checksum i9r sequence errors. 

A binary object module is defined as a sequence of binary 
records in Sigma 2/3 Standard Binary format, each of which 
begins with a nonblank name item and terminates with a 
record whose first byte is X'9F' (END card) indicating that 
the record contai ns an end item. 

A set consists of one or more object modules and is termi­
nated by a file mark or !EOD. A tape may contain one or 
more sets and is terminated by double fi Ie marks or !EODs. 
Only one set of object modules can be contained in a 
sequential-access RAD fi Ie. 

Note that the Object Module Editor routine does not main­
tain the object modules in the System Library and User 
Library areas on the RAD. These permanent areas are main­
tained via the RAD Editor (see Chapter 8). 

OBJECT MODULE EDITOR OPERATIONAL LABELS 

The Object Module Editor uses the following operational 
labels: 

Label Explanation 

BI 

La 

Device from which binary object modules 
are to be inserted. 

Device for listing either UI or UO object 
module names. 



Label Explanation 

UI Input device. 

UO Output device. 

OBJECT MODULE EDITOR OPERATING CHARACTERISTICS 

Object Module Editor operates in two modes: list and 
modify. 

In the list mode,oonly UI is read. The names of the object 
modules are printed on La, and the checksum and sequence 
for each record are verified. After interpreting the ! *LI5T 
control command, the Editor checks if any two of 51, BI, 
and UI are assigned to the same device. If so, the message 

LD U5T 

!!UKEYIN 

is written on OC. The operator responds by preparing UI 

After entering the modify mode, the Object Module Editor 
operates as follows: 

If any two of the operational labels 51, BI, and UI are as­
signed to the same device, Object Module Editor follows 
the steps below: 

1. Interpretation of control commands begins. If any 
object modules are to be inserted, and if SI and BI are 
assigned to the same device, the 51 device is read 
until an !EOD is encountered and the message 

LD IN5ERTS 

! !UKEYIN 

is written on OC and DO. The operator loads the mod­
ules to be inserted on the BI device and keys in an 5 
response. If 51 and Blare assigned todifferentdevices, 
no message is written. The Editor then reads in all the 
modules on BI until either an !EOD or any other record 
with a first byte different from X'FP or X'9F' is read 
from BI. Blank records are ignored. 

2. If there are input fi I es to be updated, the message 

and keying in an 5 response. Listing of the modules LD IN PUT 
proceeds. 

If no two of the labels 51, BI, or UI are assigned to the 
same device, control commands on SI are interpreted as 
they are read and are written on DO. If the UI device is 
assigned to a sequential-access RAD file, the Object Mod­
ule Editor leaves the list mode after reading the end-of-file. 

In the modify mode, any modules to be inserted are read 
from the BI device and written on UO, as indicated by the 
51 control commands. If there are input files to be updated, 
they are read from UI. The names of all object modules 
written on UO are listed on LO. The object modules on 
BI must be in the same order in which they are to be in­
serted on UO. 

The Object Module Editor operates in the "prestore" mode 
(reading and storing commands before interpreting) when 
the conditions shown below occur; otherwise, the Editor 
operates dynamically. 

Operational Labels 
Assigned to 5ame Device Prestored Data 

51, BI 51 

51, UI 51 

BI, UI BI 

51, BI, UI 51, BI 

!! UKEYIN 

is written on OC and DO. The operator must prepare 
UI and key in an 5 response. 

3. The mode modification control commands are inter­
preted, causing updating or generation to proceed. 
Each control command is listed on DOas it is interpreted. 

If no two of the operational labels 51, BI, and UI are as­
signed to the same device, control commands from 51 are 
read and interpreted dynamically. Records are read from 
BI and UI and written on UO in response to each mode mod­
ification control command. Every control command read 
from 51 is listed on DO. 

Object Module Editor uses M:READ and M:WRITE to perform 
all input/output. Each object module is identified by the 
program name stored in the start module item. No modules 
with blank names are even written on the UO tape. 

CALLING OBJECT MODULE EDITOR 

The Object Module Editor is requested with the control 
command I UTILITY OME DIl 

Object Module Editor Routine 101 



After interpretation of the !Un LIlY control command, 
control is transferred to the Object Module Editor routine. 
The control command and options available to OMEDIT are 
described below. 

Object Module Editor begins reading control commands 
until an !EOD or an ! *END is read, which terminates 
the SI input. 

OBJECT MODULE EDITOR CONTROL COMMANDS 

LIST The ! *LIST command causes the Editor to enter the 
I ist mode. The names of the object modul es on UI are read 
and I isted on LO. Any checksum errors detected cause 
error messages to be written on LO, but listing continues. 
If the record is an !EOD, it is listed. If two consecutive 
!EODs are encountered, the Editor leaves the list mode and 
the next control command is interpreted. The form of the 
command is 

(*UST 

MODIFY The I *MODIFY command indicates that ob-
ject modules are to be output on the UO device and causes 
the Editor to enter the modify mode. The modify mode ter­
minates when an ! EOD or I *LIST control command is inter­
preted from SI, or two !EODs from BI or UI. The form of 
the command is 

where 

GEN is an optional parameter indicating that ob-
ject modules are to be selectively input from BI 
and that fj les are to be generated on UO. UI is 
not read. The control command ! *MODIFY GEN 
may be followed only by ! *INSERT control com­
mands (GEN impl ies ! *INSERT) used to define the 
elements to be selectively copied from BI to UO. 
No ! *DE LETE control commands may be used in 
the GEN mode. 

INSERT must be specified if insertions from BI are 
to be read. If BI and UI are assigned to the same 
physical device, the complete BI file (up to an 
IEOD) will be prestored. Modules can be selected 
from BI by names on the! *INSERT control com­
mands. The inserts must be in proper order. This 
command is used to update (i nput both ! *1 NSE RT 
and! *DELETE commands) UI and to write UO. 

Note: If INSERT and GEN are omitted from the! *MODIFY 
control command, only! *DELETE control commands 
may be input. 

102 Record Editor Routine 

INSERT The !*INSERT command causes an object module 
to be inserted and is effective only in the modify mode. 
The form of the command is 

where 

name
1 

is the name (up to eight EBCDIC characters) 
of the object module to be inserted. 

name2 is the program name (up to eight EBCIDC 
characters) of the last module on UI to be deleted. 
If absent, only one module is deleted. 

The! *DE LETE control command must name modules in the 
same order as their occurrence on UI. 

RECORD EDITOR ROUTINE 

The Record Editor is used for source editing by record num­
ber from any sequential device to any other sequential de­
vice. Record Editor provides the following capabilities: 

1. Generates fi les containing source data. 

2. Lists files containing source images in addition to 
associated line numbers. 

3. Modifies fi les containing source images. 

RECORD EDITOR OPERATIONAL LABELS 

The following operational labels must be assigned in addi­
tion to the standard Uti I ity program operational labels: 

Label Explanation 

SI Input device for control commands. 

LO Output device for I isting source images. 

UI Input device. 

UO Output devi ceo 

RECORD EDITOR OPERATING CHARACTERISTICS 

The Record Editor routine operates in two modes: list and 
modify. 

In the list mode, the Editor reads source images from UI and 
lists them on the LO device. It associates each image with 
a decimal line number, starting with 1. 

In the modify mode, the Editor either updates or generates 
files on the UO device. 



Record Editor uses M:READ and M:WRITE to perform all 
input/output. Therefore, all the paper tape editing and 
keyboard/printer editing that is standard to these routines 
is performed. 

CALLING RECORD EDITOR 

The Record Editor is requested with the following control 
command 

(' UTI UTY RECEDIT 

After interpretation of the !UTI UTY control command, con­
trol is transferred to Record Editor, which begins reading 
control commands. 

RECORD EDITOR CONTROL COMMANDS 

A command requesting either the list or modify mode must 
immediately follow the !UTILITY command. All other con­
trol commands are interpreted as subcommands under each 
mode. If a binary record is read from UI, the following 
message is written on OC and DO: 

MODE ERR UI,device 

!! UKEYIN 

LIST The! *UST command (list mode) causes the previous 
mode to terminate. The source files are read from UI and 
listed on LO. Each EBCDIC source image is listed along 
with an associated line number up to and including the first 
!EOD source image or fi Ie mark read. After the required 
number of files has been listed, another control command 
is read from the 51 device. Each! *LIST control command 
file mark, or !EOD causes the line numbering to restartwith 
with 1. The form of the command is 

(' *UST [number] 

where number indicates the number of files to list. Listing 
continues unti I two consecutive !EODs are encountered or 
the specified number of files is I isted. If "number" is omit­
ted, one fi lei s listed. If UI is assi gned to a sequenti a 1-
access RAD fi I e, the number parameter must not be greater 
than 1. 

A ! *MODIFY, ! *EN D, or !EOD control command causes 
the list mode to terminate. 

MODIFY The ! *MODIFY command informs the Record 
Editor that files are to be either generated or updated. It 

terminates the previous mode and initiates the modify mode. 
The form of the command is 

(' *MODIFY [UST][, GEN] 

where 

LIST indicates that a listing of records deleted or 
inserted will be produced on LO. If UST is the 
only parameter used, the listing will contain the 
UI line numbers (the number deleted or the num­
ber preceding the one inserted). If GEN is also 
present, the UO I ine numbers wi II be listed. 

GEN indicates that records are to be read from 51 
(there is no input on UI) and written on UO. If 
updating is to be performed (that is, there is input 
to be read from UI), the parameter field is I eft empty. 

The modify mode is terminated whenever a ! *LIST, 
! *MODIFY, ! *EN D, or !EOD control command is input 
from 51. When the modify mode is terminated and GEN is 
specified, an !EOD or file mark is written on UO. When 
the modify mode is terminated and GEN is not specified, 
the remaining source images of the fi Ie on UI (until an EOD 
is encountered) are written on UO, followed by an EOD or 
file mark. 

DELETE The ! *DE LETE command causes the indicated 
record source images to be deleted and is effective only in 
the modify mode. The form of the command is 

where 

number1 is the line number of the first {or only} 
source image to be deleted. 

number2 is the line number of the last source image 
to be deleted. 

INSERT The ! *1 NSERT command causes record source 
images from SI to be added to UI and written onto UO, and 
is effective only in the modify mode. The form of the com­
mand is 

( *INSERT number 

where number is the line number that the insertions are to 
follow. If a line number of 0 (zero) is used, the insertions 
will precede the first line. 

Every source image on SI following the ! *1 NSERT control 
command is inserted until a new Record Editor control 
command is encountered. 

Record Editor Routi ne 103 



CHANGE The! *CHANGE command causes the indi cated 
source images to be deleted, and the source images fol­
lowing the CHAN GE command to be written on UO. The 
command is effective only in the modify mode. The form 
of the command is 

! *CHANGE number1 [, number 2] 

where 

numberl is the line number of the first source 
image to be deleted. 

number2 is the line number of the last source 
image to be deleted. If omitted, only one source 
image wi II be del eted. 

Following the! *CHANGE control command, every source 
image on 51 is inserted until another Record Editor control 
command is encountered. 

SEQUENCE EDITOR ROUTINE 

The Sequence Editor edits EBCDIC card images by sequence 
number. It is more flexible than the Record Editor in that 
multiple programs or sections of programs may be updated 
and sequenced individually within single or multiple files. 
It provides greater protection from updating in an incorrect 
sequence, or from accidentally updating the wrong pro­
gram. Another feature of the Sequence Editor routine is 
that update card images may be inserted without changing 
the existing sequence numbers. Thus, update decks may 
be cumulative and will reflect the development of a source 
program. 

The Sequence Editor is primarily intended for installations 
where EBCDIC source programs are kept on magnetic tape. 
It is somewhat impractical for paper-tape-oriented systems 
or systems without a line printer. 

Editing is accomplished by designating columns 73 
through 80 of a source card image as the IIsequence field". 
This field consists of two parts, the ident and the sequence 
number. 

The optional ident is that portion of the sequence field that 
uniquely identifies a program or program segment. If de­
fined, the ident begins in column 73 of the card image and 
is from one to six alphanumeric characters in length. 

The requ ired sequence number is that portion of the sequence 
field that is sequenced numerically. It consists of from two 
through eight decimal characters and ends in column 80 of 
the card image. The user can specify the value by which 
successive sequence numbers are incremented. In general, 
a large sequence increment will allow larger insertions 
without affecting the existing sequence numbers. 

Together, the ident and sequence number must not total 
more than eight characters. Any unused columns will be 

104 Seq uence Editor Routi ne 

between the ident and the sequence number and wi II be 
ignored by the Sequence Editor. 

SEQUENCE EDITOR OPERATIONAL LABELS 

The following operational labels are used by the Sequence 
Editor routine: 

Label 

51 

LO 

UI 

UO 

Explanation 

Update data (i ncl udes card images and 
control commands). 

Annotated listing of added and deleted 
card images. 

Input device. 

Output device. 

Device, above, refers to any permanent storage device such 
as magnetic tape, paper tape, or RAD (single sequential 
file). Note that LO should not be assigned to the keyboard/ 
printer, because the sequence number portion of the print­
out is truncated on that device. 

SEQUENCE EDITOR OPERATING CHARACTERISTICS 

The Sequence Editor performs two separate and distinct 
functions: generates files on UO from source images input 
on 51, and updates files from UI onto UO, taking updates 
from 51. Only one of these functions can be performed per 
call to the Sequence Editor (SEQEDIT). 

The file generation (GEN) function is used to create the 
permanent files initially. It is recommended that files be 
sequenced as they are generated to avoid an update pass at 
a later stage. The user can generate one file (terminated 
by an !EOD or an !*END from 51) wherein a singlefilemark 
is written on UO, or multiple files (terminated by two !EODs 
or ! *E NDs from 51) wherein two fi Ie marks are written onto 
UO and UO is backspaced one file. 

The update function is used to update UI by replacing, 
deleting, or inserting card images from 51 and writing the 
updated files onto UO. The files can be resequenced as 
they are written. The user can update one file (terminated 
by an EOF from UI) wherein an EOF is written onto UO or 
all files (terminated by logical end-of-tape or two EOF~ 
from UI) wherein two fi Ie marks are written on UO and UO 
is backspaced one file. With the "ALL" option, it is not 
necessary to update each file, but all files will be copied 
onto UO. 

Fi les can be sequenced as they are generated or updated. 
Sequencing is a separate operation in that the card images 
are sequenced as they are written on UO. Thus, it is pos­
sible to update an existing file by ident and sequence num­
ber while placing a new ident and sequence number on the 
updated file. 



CALLING SEQUENCE EDITOR 

The Sequence Editor is requested via the control command 

IUTIUTY SEQEDIT[, GEN] L IGN1L ALL] 

where 

GEN indicates that output files are being generated 
on the UO device and that there are no input files 
to be updated. 

IGN indicates that 51 sequence errors are to be 
ignored if UO is being generated or that UI se­
quence errors are to be ignored if UI is being 
updated. If IGN is used, no sequence error mes­
sages are printed. 

ALL indicates that the GEN function is to continue 
unti I two lEO D or ! *EN D cards are encountered 
from SI, or that the update function is to continue 
unti I two E OFs are encountered from UI. 

The Program Executi ve transfers control to the Sequence 
Editor, wh i ch interprets and va I i dates the parameters. If 
i II ega I parameters are input, the Uti I ity program aborts 
with a code of UT. If this is an update (the GEN option 
was not specified), the following message is output 6n OC 
and DO: 

LD IN PUT UI, device 

IIUKEYIN 

SEQUENCE EDITOR CONTROL COMMANDS 

IDENT The ! *1 DE NT command defi nes the breakdown 
of the sequence field into the ident and the sequence num­
ber. It applies to card images from UI and SI only. If 
used, it should precede the update cards to which it applies. 
If omitted, the ident field is considered empty and the 
sequence number is eight characters in length. The I *IDENT 
control command is used whenever it is necessary for the 
Sequence Editor to know the si ze and content of the ident 
field (that is, when UI contains multiprogram files or 
single-program files with nondecimal characters in the se­
quence field). It is not to be used when fi les are being 
generated. The form of the command is 

I *IDENT [ident1[, sequence number] 

where 

ident is an integer nl (0 ~ nl ~ 6) that specifies 
the number of characters in the ident subset of the 
sequence field starting from column 73. If lIident ll 

is omitted, the ident field does not exist. 

sequence number is an integer n2 (2 $ n2 ~ 8) that 
specifies the number of characters in the sequence 
number subset of the sequence field ending in 
column 80. If omitted, sequence number is set 
equal to the difference (8 - ident). 

The user should note that if a nonzero ident field has been 
specifi ed on an I *1 DE NT command, the idents on each card 
image from UI must match exactly or resequencing will be 
suspended when the first nonmatching ident is encountered. 
Hence, if UI is known to have nonmatching idents (for 
examp I e, a fi I e that has never been sequenced or one that 
has been updated and contains some blank sequence fields), 
a separate sequence operation should be performed (without 
a simultaneous update) specifying an empty ident field. 

Replacement. The update card itself, rather than a control 
command, is used to replace a card image from UI. The 
sequence number on the update card must equal the sequence 
number on the UI card image to be replaced. The card image 
from UI and the message IIDELETED II , followed by the card 
image from 51 and the message IIINSERTEDIl are output on 
LO. 

Insertion. The update card itself, rather than a control 
command, is used to insert a card image on UO. The se­
quence number on the update card must be between the 
sequence number of the two continuous UI card images where 
the update card is to be inserted. The card image from SI 
and the message IIINSERTEDIl are output on LO. Cards 
without sequence numbers are inserted immediately following 
the sequenced card preceding them. Thus, a large block of 
card images can be inserted by placing the proper sequence 
number on the fi rst card on I y . The nonsequenced cards wi" 
be written on the output tape without sequence numbers. It 
is recommended that the tape be resequenced as it is bei ng 
updated if unsequenced cards are inserted. 

DELETE The I *DELETE command deletes one or more card 
images from UI. Nonsequenced cards can only be deleted 
by deleting from the last sequenced card preceding the non­
sequenced card (s) up to and i nel udi ng the next sequenced 
card. Deleted card images are I isted on LO. The form of 
the command is 

78 80 

! *DELETE [sequence fi el d
2

] sequence field
1 

where 

sequence field2 indicates that the images are to be 
deleted from the ident and/or sequence number in 
sequence field 1 up to and including the ident and/ 
or sequence number in sequence field

2
. 

sequence fieldl contains the ident and/or sequence 
number of the first or only card image to be de­
leted from UI. This parameter is required. 

Sequence Editor Routine 105 



SUPPRESS The! *SUPPRESS command is identical to the 
! *DE LETE control command except that no deletion card 
images are listed on LO. The form of the command is 

73 80 

! *SUPPRESS [sequence field21 sequence field
1 

SEQUENCE The ! *SEQUENCE command is used to 
resequence columns 73 through 80 of the card images on 
UO. Only one program can be resequenced with each 
! *SEQUENCE command. Therefore, resequencing is sus­
pended when either a fi I e mark or a card image with a 
sequence number identifying a new program is written on 
the output tape. Resequencing is also suspended when 
another ! *SEQUENCE command is executed; therefore, 
parts of a program as well as entire programs can be rese­
quenced. The form of the command is 

73 80 

! ISEQUENCE [seq.field~,increment seq.field
1 

where 

sequence field2 contains the ident and/or sequence 
number of the first resequenced card image to be 
written on the output tape and does not neces­
sarily have the same fields as defined in the 
! *IDENT command. (The! *IDENT command de­
fi nes sequence fields for the input tape and update 
data only.) If omitted, resequenci ng is suspended. 

increment is the resequencing increment number. 
If omitted, an increment of 10 is used. It is the 

responsibility of the user to ensure that the se­
quence number does not get incremented past the 
size of the sequence number field. No warning 
is issued if this overlap occurs. 

sequence fieldl contains the ident and/or sequence 
number from UI at which the ! *SEQUENCE 
command becomes effective. If omitted, the 
! *SEQUENCE command takes effect with the 
next card i mage to be wri tten on UO. 

UTILITY ERROR MESSAGES 

Unless otherwise noted, the following definitions apply in 
error messages given in Tables 21 through 26: 

Code Explanation 

oplb Operational label of the device. 

device Device type or physical device number. 

The operator response to !!U KEVIN is 

Code Mean i ng 

S Continue 

x Abort 

When an i rrecoverabl e error occurs, the Uti I ity program 
aborts. For an irrecoverable input/output error on OC or 
DO, the code in the abort message is the operational label 
of the device. For: other operational labels, the irrecover­
able input/output message is written. Abort returns, due 
either to error or X operator responses, cause UT to appear 
in the abort message. 

Table 21. I/O Error Messages 

Message Meaning 

BOT oplb, device! !UKEVIN An attempt has been made to backspace over the magnetic tape load point 
or the beginning-of-tape of a RAD file. 

CAL SEQ ERR The Utility Executive has encountered a calling sequence error on a return 
from M:READ/M:WRITE. One reason may be an attempt to copy a record 
with an odd byte count onto the RAD (may occur with BCD 7-track tapes). 
See M:READ status returns in Chapter 4 of this manual. 

EMPTY oplb, device !! UKEVIN Manual intervention is required (the device is in the manual mode or no 
device is recognized). 

EOF oplb, device !! UKEVI N An unexpected tape mark, end-of-file (RAD), or !EOD has been read from 
magnetic tape, cards, paper tape, keyboard/printer, or RAD file. 

EOT oplb, device!! UKEVIN The end-of-tape mark on a magnetic tape or RAD file has been sensed. 

1 06 Ut iii ty Error Messages 



Table 21. I/O Error Messages (cont.) 

Message Meaning 

IL RAD SEQ oplb,device llUKEYIN An operational label was assigned to a random-access RAD file, or an 
attempt was made to skip, read, or write more than one RAD fj Ie. 

INV I/O OP oplb, device llUKEYIN An input/output operation is not meaningful for the requested device. 

INV OPLB oplb, device! !UKEYIN The operational label is not valid. The "oplb, device" portion of the 
message may contain invalid data if input/output is attempted for an 
operational label not recognized by the Monitor. 

I/O ERR oplb, device The input/output calling sequence is in error, incorrect length is 
specified, or no input/output is pending for a check operation. The 
Uti I ity program aborts. 

UNRECOV I/O oplb, device llUKEYIN An irrecoverabl e input/output error has occurred after the maximum 
number or retries has been unsuccessfully attempted. 

WRITE PRO oplb, device! !UKEYIN An attempt has been made to write on a write-protected magnetic tape 
or RAD file. 

Table 22. Control Function Command Error Messages 

Message Meaning 

FS KI P Command 

DEaF oplb, device! !UKEYIN Two consecutive fi Ie marks were encountered before the required number 
of fi I es had been passed. 

EaT oplb, device !! UKEYIN The end-of-tape was encountered before the required number of files has 
been passed. 

I L RAD SEQ oplb, device! I UKEYIN The number parameter is not 1 and "oplb" is assigned to a sequential-
access RAD fi Ie, or the oplb parameter is assigned to a random-access 
RAD file. 

INV OPLB ! !UKEYIN The operational label identifies an inval id device. 

PARAM ERR! !UKEYIN The oplb parameter is missing, or the number parameter is nonnumeric or 
greater than 32, 767. 

RS KI P Command 

EOF oplb, device !! UKEYI N An !EOD or file mark was encountered before the required number of 
records was passed. 

EaT oplb, device! lUKEYIN An end-of-tape was encountered before the specified number of records 
was skipped. 

I L RAD SEQ oplb, device ! !UKEYIN The oplb parameter is assigned to a random-access RAD fi I e. 

INV OPLB I I UKEYIN The oplb parameter identifies an invalid device. 

PARAM ERR! lUKEYIN The oplb parameter is missing, or the number parameter is nonnumeric or 
greater than 32, 767. 

Utility Error Messages 107 



Table 22. Control Function Command Error Messages (cont. ) 

Message Meaning 

FBACK Command 

BOT oplb, device llUKEYlN The beginning-of-tape was encountered before the required number of 
files had been passed. 

DEaF 6plb, device llUKEYIN Two consecuti ve fi I e marks were encountered before the requi red number 
of fi les was backspaced. 

IL RAD SEQ oplb, device! lUKEYIN The oplb parameter was assigned to a random-access RAD file. 

INV OPLB oplb, device ! !UKEYlN The operational label identifies an invalid device. 

PARAM ERR! I UKEYIN The operational label parameter is missing or contains more than two 
characters, or the number parameter is nonnumeri c or greater than 32,767. 

RBAC K Command 

BOT oplb, device I !UKEYlN The beginning-of-tape was encountered before the requested number of 
records had been passed. 

EOF oplb, device llUKEYlN A fi Ie mark was encountered before the requested number of records had 
been passed. 

I L RAD SEQ oplb, device !! UKEYIN The oplb parameter was assigned to a random-access RAD file or a 
compressed EBCDIC RAD file. 

INV OPLB oplb, device ! lUKEYlN The operational label identifies an invalid device. 

PARAM ERR I I UKEYlN The operational label parameter is missing or contains more than two 
characters, or the number parameter is nonnumeric or greater than 32,767. 

REWIND Command 

I L RAD SEQ oplb, device ! lUKEYIN The oplb parameter is assigned to a random-access RAD file. 

PARAM ERR llUKEYlN The oplb parameter contains more than two characters. 

UNLOAD Command 

IL RAD SEQ oplb, device llUKEYIN The oplb parameter is assigned to a random-access RAD file. 

INV OPLB oplb, device I! UKEYlN The oplb parameter identifies an invalid device. 

PARAM ERR llUKEYIN The oplb parameter was missing or contained more than two characters. 

WEOF Command 

EaT oplb, device I I UKEYlN The end-of-tape was encountered. 

IL RAD SEQ oplb,device llUKEYIN The oplb parameter was assigned to a random-access RAD file. 

INV OPLB llUKEYIN The oplb parameter identifies an invalid device. 

PARAM ERR llUKEYIN The oplb parameter is missing. 

108 Utility Error Messages 



Table 22. Control Function Command Error Messages (cont.) 

Message Meaning 

PRESTORE Command 

CORE OYFLO Available core memory has overflowed. The Util ity program aborts. 

PRE ERR !! UKEYIN The! *PRESTORE command did not follow immediately after the 
! *UTI LITY command. 

PRE OYFLO The RAD prestore file on X5 has overflowed. The Utility program aborts. 

ASSI GN Command 

ERR FRGD ! !UKEYIN An attempt has been made to assign a background operational label to a 
foreground operational label, device-fi Ie number, or RAD fi I e. 

ERR OPLBl ! !UKEYIN The operational label to be assigned is inval id. 

ERR OPLB2 ! !UKEYIN An attempt has been made to assign one operational label to an invalid 
or undefined operational label or RAD file. 

NO SPARES! !UKEYIN An attempt has been made to define a new background operational label 
but no room is avai lable in the corresponding table. 

ERR AREA! !UKEYIN An invalid RAD area name has been used. 

OPLB TABLE OYFL ! !UKEYIN An attempt has been made to define more than eight unique operational 
labels. The assign wi II be successful, but the operational label will not 
be used as an output device. 

Table 23. COPY Error Messages 

Message Meaning 

CORE OYFLO The memory area used for storing input records (when the CORE option on 
the !UTI LITY COpy command is used) has overflowed. The Uti I ity pro-
gram aborts. 

I L RAD SEQ oplb, device !!U KEYIN An attempt has been made to copy or verify from or to a random-access 
RAD file. 

OPLB TABLE OYFL ! !UKEYIN An attempt has been made to input more than eight operational labels. 
Only the first eight unique labels on an ! *OPLB card will be entered 
in the operational label table. 

{DEOF oplb, device } An end-of-tape, or two consecutive tape marks or !EODs were detected 
EOT oplb, device! !UKEYIN on X4 or UI before the number of files requested has been compared. 

EOF oplb, device! !UKEYIN An !EOD or file mark was detected on X4 or UI before the number of 
records requested had been compared. 

VERIFY ERR oplb, device An error has been found by the verification process. When a verification 
error occurs, the COpy routine terminates execution of the ! *YERIFY 
command for that device, but continues verification on other input 
devices. If an error is detected on every input device, the VERIFY 
function is aborted. 

Uti I i ty Error Messages 109 



Table 24. Object Module Editor Error Messages 

Message Meaning 

BLNK NAME oplb,device !! UKEYIN A blank name was input. 

CKSM ERR oplb,device !! UKEYIN A checksum error was detected on a record read from UI or BI. 

EOT oplb,device !! UKEYIN An end-of-tape was encountered on BI or UI. 

ILLEG BIN oplb,device !! UKEYIN The fi rst byte of a record read from UI or BI did not contain X'FF' 
or X'9F'. 

NO name oplb,device !! UKEYIN Two consecutive !EODs or tape marks on UI, or one !EOD or tape mark 
on BI were encountered during the editing process before the desired 
number of modules had been copied {where "name" is the program name 
not found}. 

NO name UI,device !! UKEYIN Two consecutive! EODs or file marks {one end-of-file for a sequential-
access RAD fj Ie} are read from UI before the Object Module Editor has 
inserted, replaced, or deleted all requested modules. 

SEQ ERR oplb,device !! UKEYIN A sequence error was detected ina record read from UI or BI. 

Table 25. Record Editor Error Messages 
-

Message Meaning 

! ! LD LIST UI,device Both SI and UI are assigned to the same device. The operator responds 
by mounting the tape to be listed and changes the state of the device. 

LD INPUT UI,device !! UKEYIN The modify mode was entered and updati ng is to be performed. The 
operator responds by mounting the tape to be input and keying-in an 
S response on OC to conti nue. 

INV CTRL ! ! UKEYIN A ! *MODIFY control command was interpreted from SI when the Record 
Editor was not in the modify mode. 

110 Utility Error Messages 



Table 26. Sequence Editor Error Messages 

Message Meaning 

DELETE ERR! ! UKEYIN No UI card images were found in the block to be deleted {for! *DELETE 
and! *SUPPRESS commands}. 

DEOF UI,device ! ! UKEYIN The program to be updated was not encountered on the input tape before 
the logical end-of-tape. An 5 response causes the Sequence Editor to 
return to RBM. All updating done prior to this point has been written, 
along with the logical end-of-tape marker on the output tape. 

PARAM ERR!! UKEYIN Case 1. Update data from 51 contai ns an illegal sequence number; that 
is, a nonnumeric character. An error alarm is also listed on LO. 

Case 2. --- A necessary control command parameter was omitted. 

Case 3. The ident parameter {on an ! *1 DENT card} is greater than 6, the --- sequence number parameter is less than 2, or the sum of the two 
parameters is greater than 8. 

SEQ ERR oplb,device ! ! UKEYIN A sequence error was found in either the update data or input tape. In 
this case, the oplb parameter refers to either SI or UI. An error alarm is 
also listed on LO. 

UNRECOV I/O UI,device !! UKEYIN An irrecoverable read error has occurred on UI. The partial card image 
input and the message "UI IGNORED RECORD FOLLOWS XXXXXXXx" 
{when xxxxxxxx is the previous nonblank UI ident and/or sequence 
number} is output on LO. 

UNRECOV I/O UO,device !! UKEYIN An irrecoverable write error has occurred on UO. The card i mage to be 
output, and the message II UO RECORD OMITTED" or "UO FI LE MARK 
OMITTED", are output on LO. 

Util ity Error Messages 111 



10. PREPARING THE PROGRAM DECK 

The following examples show some of the ways program 
decks may be prepared for RBM operation. Unless stated 
otherwise, standard default cases for device assignments 
are assumed. 

EXTENDED SYMBOL EXAMPLES 

ASSEMBLE SOURCE PROGRAM. LlSnNG OUTPUT 

AND BINARY OUTPUT 

In this example, the symbolic input is received from the 
51 device (always defaulted), the binary output is received 
on the BO device, and the listed output is received on the 
LO device. Note that although BO and LO are normally 
default cases, they must be specified if output to the GO 
fi Ie (also a default) is not desired. 

ASSEMBLE IN BATCH MODE. LISTING OUTPUT AND 

BI NARY 0 UTPUT WITH SYMBOL CROSS-REFERENCE 

112 Preparing the Program Deck 

In this example, the source decks are assembled in batch 
mode (BA). In this mode, successive assemblies may be 
performed with a single IXSYMBOL command until a 
double IEOD command is encountered. The parameters 
defined on the IXSYMBOL command will hold true for 
each assembly in the batch. Each assembly will be fol­
lowed by a Symbol cross-reference (CR). 

ASSEMBLE. LOAD. AND GO FJlOM USER DEFINED 
OV FILE. LISTING OUTPUT 

IASSIGN OV=USEROV,UP 

In this example, the user is defining his own OV file 
through a cal I to the RAD Editor. After assembly, the OV 
file is assigned to the user defined file. The call to the 
Overlay Loader (IOLOAD) causes it to load the module 
defined on the I$ROOT command to the USEROV file for 
execution. The advantage to assigning the program to a 
user-defined OV file rather than using the RBMOV file is 
that the program can be loaded into core for execution 
repeatedly without reassembly. Conversely, the contents 
of RBMOV cannot be guaranteed to be saved from one job 
to another. 



!OLOAD 

ASSEMBLE SOURCE PROGRAM, 
LISTING OUTPUT, LOAD AND GO 

In this example, the binary object module is loaded into 
the RBMGO file located in the System Data area. The call 
to the Overlay Loader (! OLOAD) causes it to load the mod­
ule defined on the! $ROOT command to the RBMOV file for 
execution. The double comma on the !$ROOT command 
informs the Loader that the temp, exloc parameter options 
are defaulted. The "1" following the GO oplb specifies 
that one object module is to be loaded. 

BASIC FORTRAN IV EXAMPLES 

COMPILE MULTIPLE PROGRAMS 

In this example, output to the GO file is not desired in the 
first job, so the GO oplb must be assigned to 0 (see Appen­
dix E and !ASSIGN command writeup in Chapter 2). An 
object listing is desired (LO) and extended precision real 
data is specified. 

The second job will receive a source listing by default and 
extended precision real data is again specified. Since the 
parameters are different on the two !FORTRAN control 
commands, the jobs cannot be run in batch mode. 

COMPILE, LISTING OUTPUT, LOAD AND GO 

In this example, the !ATTEND command specifies that 
the Monitor is to go into a "wait" state instead of 
aborting the job in case of irrecoverable error (gener­
ally recommended for II10ad and goll jobs). Binary out­
put will be received on both the BO and GO devices 
by default, and standard precision mode is also assumed 
by default. The binary object module is loaded into 
the RBMGO file located in the System Data area. 

The call to Overlay Loader (!OLOAD) causes it to 
load the module defined on the ! $ROOT command to 
the RBMOV file for execution. The double comma on 
the ! $ROOT command informs the Loader that the temp, 
exloc parameter options are defaulted. The Loader is 

Basic FORTRAN IV Examples 113 



requested to output a LONG map (! $ML). The !XEQ 
command causes the executable program to process the 
data deck. 

COMPILE AND EXECUTE FOREGROUND PROGRAM 

This example would be used for debugging purposes only. 

In this example, binary output to the BO device is 
suppressed. The !FORTRAN control command specifies 
that the binary output is to be received on the GO file 
by default and standard precision mode is assumed. The 
! PAUSE command permits the operator to key in FG, S 
to access protected foreground memory. The program is 
defined to the Overlay Loader as a foreground program 
(!OLOAD, F) and the COMMON base is set to the 
FWA of the background. The Loader is to create the 
Task Control Block, the first two words of which are 
defined on the !$TCB command. These two words spe­
cify that the task is to be connected to interrupt loca­
tion IOD (Integral interrupt number 2, priority level 8, 
within group 0). 

The I$ROOT command specifies that the root is to be 
loaded from the GO file, and will start execution at 
location 1800 in foreground memory. The core image 
form of the program is loaded on the OV file (RBMOV). 
The !XEQ command loads the executable program into 
core. When loaded, the task is armed, enabled, and 
then triggered. 

114 Segmented Foreground Program Exampl es 

SEGMENTED PROGRAM EXAMPLES 

ASSEMBLE SEGMENTED BACKGROUND PROGRAM. 
LOAD AND GO 

seg 1 

Root (seg 0) seg 2 

seg 3 

!$SEG 1,0,GO, 1 

Given the program tree structure shown above, the sample 
deck setup illustrates a background program with a root and 
three overlay segments. These are assembled and loaded 
into the RBMGO file. The !OLOAD command specifies 
that these three segments are to be loaded, and defines it 



as a background program (B). The $SEG commands spec ify 
that segments 1 through 3 are attached to the root, and the 
modules are to be loaded from the RBMGO file to the 
RBMOV file for subsequent loading into core for execution. 
A load map is output (! $MP). 

LOAD AND EXECUTE MULTIPLE OBJECT MODULES 

seg 4 
j 

I 

seg 1 

I Root seg 5 
I 

I I 

seg 2 
-1 
I 

seg 3 
I 

I 

Given the sample program tree structure shown above, the 
illustrated deck would load and execute the segmented 
program. The program is loaded from either the device or 
fi Ie assigned to the BI operational label. No load map is 
requested (an !$ML, !$MS, or !$MP command could be 
inserted after the !OLOAD command if a map was desired). 
Although the segments could be loaded in any order, the 
proper calling sequence is the responsibility of the user. 

RAD EDITOR EXAMPLES 

BUILD PUBLIC LIBRARY 

The Public Library is core resident. In this example, the 
user must create two RAD fi les to set up the Pub lie Library: 
the LIBSYM file and the PUBLIB file. The LIBSYM file 
contains the Symbol Table for the Publ ic Library and is used 
by the Overlay Loader to satisfy references to the Public 
Library. The PUBLIB file contains the Public Library and 
is booted in with RBM. (RBM must be rebooted to load the 
updated Public Library.) 

RAD Editor Examples 115 



LOAD ROUTINES IN USER LIBRARY 

In this example, the User Library requires the following 
six files to be allocated in the User Library area (UL): 
MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, and MODULE. 
The !#LADD command enters the routines into the defined 
four files, depending on the library code parameter on the 
!#LADD command: Basic (B), Main (M), or Extended (E). 
The same basic method is used to set up the System Library. 

116 Utility Examples 

UTILITY EXAMPLE 

CREATE A CONTROL COMMAND FILE 

In this example, the job stream will create the compressed 
file CCFILE in the User Data area. Control commands will 
be read from the SI device into fi Ie CCFILE. The job 
stream on CCFILE may now be executed by assigning 
CC = CCFILE, UD. Note that CCFILE must not have a 
!JOB command on its first entry, since this would imme­
diately transfer CC back to the SYSGEN assignment. How-
ever, it is often convenient to end the control command 
file with a !JOB command to initiate a return to the 
SYSGEN assignment. 

t A !JOB command must not be the first card in the Control 
Command deck; !JOBC is permissible. 



11. SYSTEM GENERATION AND SYSTEM LOAD 

INTRODUCTION 

An RBM system designed for the requirements of a specific 
installation is generated in two phases: SYSGEN (System 
Generation) and SYS LOAD (System Load). These two phases 
create the Monitor and its required overlays. The SYSGEN 
phase defines RAD allocation or allows the user to override 
the nominal area allocation. 

SYSGEN loads only the specific installation parameters; 
none of the processors are loaded at this time. Itsonlyout­
put is an optional, rebootable version of the Monitor. This 
rebootable Monitor is output on the PM (Punch Monitor) 
assigned device. 

When SYSGEN is completed, core memory is set up for the 
SYSLOAD function to load the RBM overlays. System pro­
cessors, user processors, and other user-determined programs 
are loaded onto the RAD by the Overlay Loader or the RBM 
Absolute Loader. 

It is possible to modify the Monitor and/or its associated 
processors individually without going through the entire 
system generation process. Specifically, 

• A new versi on of the RBM can be wri tten wi thout af­
fecting the remainder of the RAD. Therefore, reloading 
the entire RAD wi II not be necessary. 

• Anything on the RAD can be replaced without going 
through a SYSGEN as long as the replacements do not 
exceed their SYSGEN-defined areas. 

• One installation can perform a SYSGEN for another 
installation and merely forward a copy of the reboot­
able RBM binary deck. However, the recipient 
facility will have to perform the SYSLOAD; that is, it 
wi II have to load the RBM overlays, the system proces­
sors, the user processors, and other installation specific 
programs on the RAD. 

SYSGEN 

INITIAL CORE ALLOCATION 

The RBM system is assembled in two parts. Part 1 is assem­
bled in absolute and contains SYSGEN (and SYSLOAD), 
and Part 2 is a stack of relocatable binary decks that may 
be loaded onto the RAD by SYSLOAD. (A list of these 
modules and their corresponding idents is given in Table 20.) 
Part 1 is loaded by an Absolute Loader (see lABS control 
command in Chapter 2). Nonoptional resident portions of 
RBM are loaded into the low core (OK-4K) locations from 
which they will execute; optional resident routines and the 
system generation routines are loaded into high core 
(4K-12K). RBM overlays are loaded at SYSLOAD time. 
The absolute binary deck that includes all optional routines 
is initially loaded by the Absolute Loader. 

After this deck is loaded, the Absolute Loader enters the 
"wait" state. At this point the operator must enter the 
device number of the keyboard/printer into the data 
switches. (The devi ce number used is that of the keyboard/ 
printer employed by SYSGEN to communicate with the 
operator.) Then the operator may c lear the "wait", and 
SYSGEN wi II conti nue. 

MINIMUM CONFIGURATION 

The following minimum configuration is required for the 
RBM system generation: 

1. Keyboard/printer. 

2. Minimum of 16K of core storage. 

3. RAD of at least .75M bytes or disk pack. 

4. Protection and memory parity features. 

5. Hardware interrupts for the RBMControl Task and I/O. 

OPTIONAL ROUTINES 

There are two basic divisions of the optional routines: 
those actually resident at all times and those functioning 
in the overlay region. All of the routines listed in 
Table 29 function in the overlay region and therefore con­
tribute essentially nothing to the resident size of RBM. The 
optional resident routines that contribute to the size of 
RBM are as follows: 

Routine 

Power On/Off 

Accounting (Clock 1) 

High-Speed Line 

Printer Handler 

Magnetic Tape Handler 

Multiply/Divide Simulation 

M:IOEX 

Approximate Size 
(decimal) 

196 

216 

79 

208 

175 

188 

The presence of these optional routines is primari Iy depen­
dent on the installation hardware configuration, which is 
partly determined as the device-file information is input. 
If the indicated hardware is present, SYSGEN moves the 
optional routines to the resident portion of RBM or set the 
appropriate overlay ident into the overlay table. 

System Generati on and System Load 117 



For example, if a Y response is given for the INC. MUL/ 
DIV.SIM. query, SYSGEN moves the multiply/divide 
simulation package that is included in Part 1 to the proper 
location in core. As another example, if CR4/XX,B is 
typed under the heading DEVICE FILE INFO, SYSGEN 
enters the ident of the card reader error recovery routine 
in the OV: LOAD table. SYSLOAD encounters this ident 
while loading Part 2, singles out the corresponding module, 
and saves it as an overlay on the RAD. 

Debug and the Character-Oriented Communications handler 
operate in the foreground; eithera resident foreground region 
or a nonresident foreground area must be allocated if they 
are to be included. 

A method for determining the size of RBM before a SYSGEN 
is perfornred is given in Appendix I. 

CORE MEMORY ALLOCATION 

Core memory is allocated in the following manner {see 
Figure 10}: 

1. The first 256 words in lower memory {the zero table} 
are reserved for a communication region (see Table 1). 

2. The region from {decimal} 256 to 399 is reserved for 
internal and external interrupt levels; any space not 
required for interrupt levels will be used by the 
Monitor for table space. 

3. The remainder of core wi II be allocated by SYSGEN 
as follows: 

a. Resident RBM, to be loaded begi nning at location 
400 {decimal} and to include only optional routines 
selected by SYSGEN. 

b. Public Library (if allocated). 

c. Resident Foreground {if allocated}. 

d. Nonresident Foreground (if allocated). 

e. Background, at least one page whether or not 
required; minimum amount allocated should be 
length of the Job Control Processor {3500 locations, 
decimal}. See Figure 11. 

4. No foreground space need be allocated for a batch­
only system. 

When all user inputs necessary to calculate the exact size 
of the resident RBM are made, the ending address of 
RBM will be output by SYSGEN. The user will then input 
starting addresses for the Public Library, the resident fore­
ground, the nonresident foreground, and the background. 
The user should decide which of these areas are more apt to 

118 SYSGEN 

need additional core space and make the core allocation 
accordingly. A given area could then expand in a future 
SYSGEN, but only the programs in that area would have to 
be reloaded and not the entire system. {In Figure 13, for 
example, the resident foreground might expand into the 
unused Publ ic Library area.} 

Figures 12 and 13 illustrate the core layout both after abso­
lute load and after SYSGEN and SYSLOAD. 

HAD ALLOCATION 

During SYSGEN, the total RAD space is divided into a 
minimum of 1 and a maximum of 20 different areas. Each 
area is labeled with an area mnemonic, usually from the 
following list: 

SP UP CP Dn 
SD UD BT Xn 
SL UL 

where n is a hexadecimal digit. 

Areas are allocated by tracks, so the actual size of an area 
is dependent on the type of RAD device. The various track 
sizes are given below: 

7202/4 2880 words 

7232 6144 

7242 3072 

If the first area allocated to each RAD is not preceded by an 
SK {skip track} input, the system bootstrap will be written 
in sector 0, and the area will actually begin at sector 1. 
All other areas, with the possible exception of the BT area, 
will always start on a track boundary. The five areas 
described below may receive default allocations. During 
RAD allocation, the user must specify a system RAD to 
receive the default areas. An SK input as the last input on 
the system RAD wi II be ignored if default allocations are 
to be made. 

The areas that may be default allocated and their sizes are 

SP 

SD 

SL 

CP 

Only large enough to contain RBM overlays 
and all standard processors (see Table 6). This 
is the only mandatory area. 

Only large enough to contain nominally large 
RBM GO and RBM OV files and other small 
files (i.e., RBM S2, RBM IDetc.}. 

Only large enough to contain the standard 
system libraries: standard precision, extended 
precision and common, or main libraries. 

Only large enough to contain all of 
background. 



(K:PLFWA) 

(K:RFFWA) 

(K:NFFWA) 

(K:BACKP) 

(K:BACKBG) 

(K:UNAVBG) 

I 

0 
w 
I­
U 
w 
I-
o 
~ 
c.. 

I 
o 
w 
I­
U 
w 
I-
o 
~ 
c.. 
Z 
:::J 

! 

Low Core 

External/Internal Dedicated Interrupt Locations 
Zero Table: Constants and Pointers 

Resident RBM 

Selectable, optional RBM Routines 

I/O tables for RBM 

Transfer Vector Table 

Public library 

Rea I-ti me task # 1 temp stack 

Task Control Block #1 

Real-time task # 1 

Real-time task #2 temp stack 

T ask Control Block #2 

Real-time task #2 

Special end-action I/O routine 

Foreground program # 1 COMMON 

· · · 
Real-time task #N temp stack 

Task Control Block #N 

Real-time task #N 

Background TCB 

Background temp stack 

User mai n program 

User subprograms 

library subprograms 

Blank COMMON (if any) 

High Core 

Figure 10. RBM Core Memory Allocation Example 

RB M 

Re sident 
Fo reground Program # 1 

A dditional Resident 
oreground F 

N onresident 
reground Space Fo 

Ba ckground Program 

SYSGEN 119 



Low Core 

High Core 

120 SYSGEN 

Background TCB, without PSD 
(In protected memory) 

Floati ng accumulator (5 locations) 

FORTRAN I/O Format Information 

Allocated temporary space 

Unallocated (as yet) temporary 
space for Public Library Use 

User Program and subprograms 
(Including any library routines 
not in the Public Library) 

Unused core 

RAD I/O Blocking Buffers 
(From 1 to 16 buffers; size of 
buffer determined at SYSGEN) 

Blank COMMON (if any) 

(Unavailable Memory) 

Figure 11. Background Core Allocation Example 

(K:BACKP) 

(K:BAC KBG), (K:BASE) 

TEMPBASE+6 

K:DYN 

TEMPLIM 

(K:BAC KBUF) 

(K:UNAVBG) 



RBM Zero Table 

RBM Resident Routines 

RBM Optional Resident Routines 
and Tables 

RBM SYSGEN 

RBM SYSLOAD 

RBM Optional Nonresident 
Routines 

TVECT Table 

Figure 12. Core Layout After Absolute Load 

o 
RBM Zero Table 

100 
Interrupt Locations (Unused Interrupt 
Locations Used by RBM Tables) 

190 
RBM Resident Portion 
(Nonoptional Routines) 

RBM Overlay Region (512 Words) 

RBM Resident Region (Optional 
Routines) 

Unused RBM Area 

Transfer Vector Table for 
RBM and Public Library 

Publ ic Library 

Unused Publ ic Library Area 

Resident Foreground 

Unused Resident Foreground Area 

Nonresident Foreground 

Unused Nonresident Foreground Area 

Background (RBM Overlay Area for 
JCP) 

High Core 

Figure 13. Core Layout After SYSGEN and SYSLOAD 

BT Remaining RAD space. The last track avail­
able for the default assignment of this area is 
device specific, as follows: 

Device Last Track Available+ 1 

7202 123 

7204 506 

7232 506 

7242 4000 

For all devices except a 7242, all avai lable tracks may be 
allocated. Tracks at the upper end of the device are used 
as alternates for bad tracks within an area. The RAD allo­
cation at SYSGE N constructs the Master Dictionary, con­
sisting of four words per entry. The only restrictions are 
that each area mnemonic must be alphanumeric, the size of 
the Master Dictionary may not be exceeded, and if an area 
is allocated twice, the space originally reserved will be 
lost. 

FILE CONTROL TABLE ALLOCATION 

The File Control Table (FCT) is indexed by device-file 
number and contains information about all device-files in 
the system. The total size of the File Control Table is 
determined and allocated at SYSGEN time. The term 
"device file number" (DFN) indicates the order in which 
devices are defined. For example, since the first device 
defined must always be a keyboard printer; DFN 1 will al­
ways specify a keyboard printer. Devices other than the 
RAD have permanent device-fi Ie number assignments made 
at SYSGEN time. SYSGEN allows room for up to 50 per­
manent device-files (not including RAD files). 

A separate device-file (i. e., FCT entry) is required for 
each open fi Ie on the RAD. Hence, the total number of 
entries necessary in the File Control Table for all RAD files 
is the maximum number of simultaneous open files. At 
SYSGEN time, the user must specify this maximum number 
of device-fi les for his foreground programs. For the back­
ground, nine device-files will be allocated (a sufficient 
number for the system processors), if the user does not 
choose to override the default case. 

SYSGEN always allocates three foreground RAD files for 
use by the Monitor in addition to the number of RAD fore­
ground fj les input by the user. Hence, the total size of the 
File Control Table will be the sum of the number of non­
RAD fi les assigned, plus the total number of RAD files re­
served for foreground use plus three, plus the number of 
RAD fi les reserved for background use (ni ne, if none are 
explicitly reserved). 

The user can make file dictionary entries on the RAD for 
his foreground programs and then permanently allocate a 
foreground device-file number to that RAD file by assigning 

SYSGEN 121 



the RAD fi Ie to a foreground operational label. A device­
file number reserved for background use is assigned by the 
Monitor service routines M:DEFINE and M:ASSIGN when­
ever a call is made to either of these routines. For RAD 
device-files, SYSGEN allocates the appropriate space in 
the Fi Ie Control Table and sets the background/foreground 
indicator, the "file for RAD use" indicator, the maximum 
retry counter, and the pointer to the I/O Control Table. 
For non-RAD files, SYSGEN sets in the File Control Table 
the background/foreground indicator, the channel number, 
the device type number, the "file for non-RAD use" indi­
cator, the device number, the maximum retry counter, and 
the pointer to the I/O Control Table. 

SYSGEN also allocates space for the I/O Control Table. 
The amount of space required for each type of device is 
contained in the Device Type Table. 

OPERATIONAL LABEL ASSIGNMENTS 

During SYSGEN the user specifies the selected standard 
operationa I labels and assi gns each to a device-fi Ie num­
ber (other than a RAD fi Ie number) or to device-fi Ie zero. 
These assignments will be maintained as permanent assign­
ments for the appropriate operational label. 

The operational labels listed below are normally associated 
with RAD files. Therefore, permanently assigning these 
labels to non-RAD files at SYSGEN time is not permitted. 

Operational 
Label 

RM 

ML 

PI 

OV 

Xl-X5 

S2 

GO 

122 SYSGEN 

Use 

Used by RBM to load the RBM overlays 
and is reserved exclusively for RBM. 

Used by M: LOAD to load nonresident 
foreground programs. 

Should be used by any background program 
wi th overlays to load the overlay segments 
from the RAD. For system processors, PI 
is assigned to the processorfile. For back­
ground programs loaded with an XEQ com­
mand, PI is assigned to OV. Foreground 
programs must specifically assign an opera­
tional label to the file from which overlay 
segments are to be read. 

Norma lIy assi gned to the RBMOV fi Ie for 
"assemble and go" type operations. 

Processor scratch fi les. 

XSYMBOL standard procedures. 

Normally assigned to the RBMGO file 
for "assemble and go" type operations. 

After all inputs are made by the user, SYSGEN allocates 
three additional entries in the Foreground Operational 
Label Table for RAD foreground labels. 

A total of 100 operational labels can be allocated and 
assigned at SYSGEN time, including those automatically 
allocated by SYSGEN. 

INPUT PARAMETERS 

When RBM is loaded and control is transferred to the 
SYSGEN routine, operator intervention is required to input 
the system parameters. The followi ng device types are 
standard and must be referred to by name when inputting 
the device-fi Ie defi nitions: 

SYSGEN Device Device 
Type Name Device Characteristics Name 

---

KP Keyboard/pri nter KP 

M9 Magnetic tape, 9-track MT 

PT Paper tape handler PT 

M7 Magnetic tape, 7-track, MT 
packed binary option 

B7 Magnetic tape, 7-track MT 
BCD option 

RDt RAD or disk pack RD 

XX Special-purpose device for 
use with M:IOEX 

LP2 Line printer, 240lpm LP 

LP8 Line printer, 800lpm LP 

CR4 Card reader, EBCDIC option, CR 
1400 or 400 cpm 

BR4 Card reader, BCD option, CR 
1400 or 400 cpm 

CP3 Card punch, 200 cpm CP 

BP3 Card punch, BCD option, CP 
200 cpm 

CPl Card punch, EBCDIC CP 
opti on, 100 cpm 

tRD is used only to reserve a specific number of foreground 
or background RAD fi les, not as a name of the form dtnn. 



SYSGEN Device Device 
Type Name Device Characteristics Name 

BP] Card punch, 100 cpm CP 

PL Graphic plotter 
t PL 

tRBM supports the graphic plotter as a device type but will 
not do any special converting or formatting. The user can 
either use the existing library routines to format data for 
the plotter or perform his own formatting. 

The Run-Time names are used by M:READ/M:WRITE for op- I 
erator communication. 

Table 27 defines the system parameters that are input via the 
keyboard/printer, paper tape reader, or card reader during 
SYSGEN. Note that all numeric entries can be input in 
either decimal or hexadecimal with leading zeros ignored; 
all hexadecimal entries must be preceded by a +. Comments 
can be added to any input by leaving one space after the 
required input is made. All inputs from the keyboard/printer 
must terminate with a NEW LINE code. Commas are used 
to separate fields. If an input/output device is not in the 
START state, an appropriate message will be written on the 
keyboard/ pri nter. 

Table 27. SYSGEN Input Options and Parameters 

Output Message 

! !RBM SYSGEN 
INPUT DEVICES 

VERSION 

MEMORY SIZE 

MAX. INT. LOC. 

CONTROL TASK INT. LOC. 

INT. CHANNELS} 
EXT. CHANNELS 

Input Parameters 

Device Name and Number 
(e. g., CR4/03, LP8/02;KP, 
NO;PT20, KP) 

Two alphanumeric characters 
(e.g., Al orA2 or Bl, etc.) 

Numeric size 

Address 

Address 

x - y or 0 

Description 

Device name and device number of the input and 
output devices to be used during SYSGEN. If the 
keyboard/printer is to be used exclusively, only KP 
need be input. The only acceptable device names 
are CR, LP, KP, PT, or NO. 

The RBM version will be stored in a zero table lo­
cation, K:VRSION, output by RBM on LL at the 
start of each job and by postmortem dump whenever 
it runs. 

Total core memory size of Sigma 2/3, stored in a 
zero table location, K:UNAVBG. 

Maximum Sigma 2/3 address for real-time external 
interrupts (263 < A < 400). t The space unused by 
the interrupts will be allocated to RBM tables by 
SYSGEN. 

Address of interrupt used by RBM Control Task. Must 
be the interrupt with the lowest priority avai lable. 

Indicates the numbers of the I/O channels specific 
to this installation. x is the first channel number, 
and y is the last number. If no channel exists for 
this lOP, a 0 is input. Sigma 2, for example, would 
always have an input of 0 for EXT. CHANNELS. 
The number of channels must be greater than four but 
less than 20 for Sigma 2 (less than 28 for Sigma 3). 
For Sigma 3, 0 through XI BI are the internal chan­
nel numbers and XICI through X l l BI are the exter­
nal channel numbers. 

tAlthough Sigma 3 has provisions for interrupt locations only as high as 368, 400 is considered to be the beginning of 
operating RBM for compatibility with Sigma 2. The 32 extra cells are used for input/output tables. 

SYSGEN 123 



Output Message 

NO. LINES/PAGE 

NO. DEFS IN PUB. LIB. 

NO. ENTRIES IN 
NONRES. FGD. QUEUE 

NO. FGD PARITY ERRS 

NO. DICT. ENTRIES 

ALT. TRK. POOL SIZE 

RAD ALLOCA nON 

124 SYSGEN 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

Number 

Number 

Number 

Number 

Number 

Number 

RDxx/dn ,{~} ,S 

{for example, RD42/E1, S} 

Description 

Number of lines to be printed on each page during 
an Extended Symbol assembly. SYSGEN will save 
the input value in zero table location K:PAGE, for 
later use by Extended Symbol in printing out a title 
at the top of each page. Input value n must be 
0< n < + 8000. 

Number (n < + 100) of definitions (DEFs) in the 
Public Library. This input is needed so that the 
Transfer Vector Table can be correctly allocated. 
If zero is input, SYSGEN assumes there is no 
Publ ic Library. 

Reflects the maximjm queue size for nonresident 
foreground programs. 

N urn ber of pa ri ty errors to a II ow in foregrou nd 
before disabling the foreground task. 

Specifies the length of the Master Dictionary. 
Entries are already allocated for SP, SD~ SL, CP, 
and BT. A number from 0 to 15 may be input, 
specifying the additional Master Dictionary entries. 
Each entry requires four words. 

Specifies the length of the Alternate Track Pool, 
which will contain bad track numbers. It should 
be at least as large as the maximum number of 
known bad tracks. The bounds are 0 to 512. 

xx specifies the device type as follows: 

02 7202 
03 7203 
04 7204 
32 7232 
42 7242 

dn is the hardware device number for this RAD, 
which must be driven by a channel defined 
previously under "INT CHANNEL" or "EXT 
CHANNELS". Each device can only be input 
once, but as many as 12 devices, each with area 
allocations, may be input. I or E specifies the lOP 
type; I refers to an Internal lOP, and E to an External 
lOP. E is assumed for a 7242 or 7246 and is the de­
fault case for a 7232. lor E must be input for a 720x. 
If this parameter is not used, an intervening comma 
before the next parameter is not necessary. 

S indicates that this device is to receive default 
allocations. If more than one S parameter is input 
the last is used. If S is not input, the device re­
ceiving the SParea is used. Either S or the SParea 
must be input. 



Output Message 

RAD ALLOCATION (cont.) 

BUFFER SIZE 

INC. POWER ON/OFF 

INC. MUL/DIV. SIM. 

INC. M:IOEX 

INC. CLOCK ONE 

INC. DEBUG 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

yy =zz 
For example: 

END 

SP = 30 
SD'= 20 
D1 = 100 
D2 = 200 

180 or 512 

Y or N 

Y or N 

Y or N 

Y or N 

Y or N 

Description 

yy is any area mnemonic, usually from the following 
list 

SP UP BT Dn 
SD UD CP Xn 
SL UL 

where n is a hexadecimal digit. 

zz is the number of tracks to allocate for area yy. 
If zz = 0, area yy will be undefined, and an 
additional Master Dictionary entry will be available. 
If zz = ALL, the area will occupy the remainder of 
the RAD and no other inputs may be made for this 
RAD. If yy = SK, zz numberoftrackswill be skipped 
before the next area is allocated. But to be mean­
ingful, another area must be input. If the first 
input is not SK = zz, this RAD will receive a system 
bootstrap in sector 0 and the next area will actually 
begin in sector 1. If no orders are allocated on 
RAD dn, however, no bootstrap will be written. 

Terminates the RAD ALLOCATION parameter. 

In the example given, areas SP, SD, Dl and D2 
will receive the number of tracks specified. SL, 
CP, and BT will be default allocated, (as described 
under RAD ALLOCA nON) on this same device. 

Specifies the blocking buffer size for all Monitor 
blocked fi les in this system. 

Yes (Y), if Power On/Power Off routine is to be 
included in resident RBM. 

Yes (V), if multiply/divide software is to be in­
cluded. If multiply/divide hardware exists, 
No (N) should be input. 

Yes (V), if optional RBM service routine M:IOEX 
is to be included. 

Yes (V), if Clock 1 is to be used by RBM for job 
accounting, for limiting the execution time of 
background jobs, for time I imits on I/O transfers, 
and for keeping time of day. If No (N) is input, 
Clock 1 is not available and SYSGEN will not load 
the job accounting portion of the RBMControl Task. 

Yes (Y), if RBM Debug is to be included. If Debug 
is included, at least 200(16) foreground cells must 
be allocated and Debug I/O devices may be input 
below, under DEVICE FILE INFO. If No (N) is 
input, Debug will not be loaded and the user can 
use the 32 zero table Debug cells as additional 
foreground rna i I boxes. 

SYSGEN 125 



Output Message 

INC. MISC. 

INC. C.O.C. 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

Y or N 

Y or N 

Description 

Yes (Y), if the non-Debug Core Dump, RAD Dump, 
and Hex Corrector routines are to be included in 
RBM. If a Y response is given, the resident size 
of RBM will increase by 85(10) cells. 

Yes (Y), if Character-Oriented Communications 
Handler is to be included. If COC is included, at 
least 1000 cells must be allocated for resident 
foreground. 

1----------------+------... ----------+------------------------1 

DEVICE FILE INFO. 
[(INC. DEBUG)] 

126 SYSGEN 

dtnn,x ,[{~}] 

RD, x, Y 

The first parameter, dt, specifies a certain pe­
ripheral and must be one of the device type names 
listed previously under "Input Parameters ll

• The 
second parameter, nn, is the hardware device 
number of this peripheral and must indicate a pre­
viously defined channel. The third parameter, x, 
is F if this is a foreground device, B if this is a 
background device, DI if this is a Debug input 
device, or DO if this is a Debug output device. 
(DI and DO will not be accepted if an N (no) re­
sponse was given to the INC. DEBUG messaGe.) 
The last parameter, I or E, is required to indi­
cate lOP type for a multiunit device; I indicates 
an internal lOP, and E indicates an external lOP. 
The last parameter is ignored if the device is not a 
multiunit type. 

The first device-fi Ie entry, DFN 1, must be KPnn, F. 
The term "device-file number", abbreviated as DFN, 
indicates the order in which device parameters are 
input in response to the DEVICE FILE INFO. output 
message. 

This entry indicates to SYSGEN that y RAD File 
Control Table entries are to be saved for the mode 
specified by the parameter x (same as x above, ex­
cept that DI and DO cannot be used). The y pa­
rameter may be one or two decimal digits. An entry 
must always be input for the foreground, and a 
default number of 9 is used for background files if 
a user fails to allocate any background file. (Thus 
if no input is given, SYSGEN wi" reserve nine 
background RAD file entries.) The value 9 is always 
added to the background allocation. 

Examples: 

DFN No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Device-Fi Ie 

KP40,F 
LP8/02,B 
CR4/03,B 
CP1/04,B 
PT20,B 
BR4/03,B 
M9DO,B,E 
M9Dl,B,E 
M7EO,B,E 



Output Message 

DEVICE FILE INFO. 
[(INC. DE BUG)] 
(cont.) 

BCKG. OP. LBL. 

FGD. OP. LBL. 

RBM LWA = + xxxx 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

RD,x,y (cont.) 

END 

Operational label = device­
file number, or device unit 
number=device-file number 
(one per line, terminated by 
END); O=n means reserve n 
locations in Operational 
Label Table for temporary 
assignments. (Temporary 
space is needed for execution 
time temporary assignments, 
or for RAD fi les above and 
beyond that number (9) wh i ch 
is automatically allocated 
by SYSGEN). 

Examples: 

SI=3 
102=4 
0=3 (reserves three addi­

tiona� entries in Op­
erational Label Table) 

END 

Same as for background, ex­
cept that space for three 
operational labels is auto­
maticallyassigned. 

None 

Description 

Examples: 

DFN No. 

10 
11 
12 
13 
14 
15 
16 
17 
18-27 
28-46 

Device-Fi Ie 

B7EO,B,E 
LP2/05,F 
CR4/03,F 
M9DO,F,E 
M9D1,F,E 
XXDO,F 
LP8/02,DO 
CR4/03,D1 
RD,B,10 
RD,F,20 
END 

Signifies end of device-fi Ie information. 

Background operational labels or device-unit number 
and device-fi Ie number equivalents for permanent 
I/O assignments. No operational labels can be 
assigned to RAD files at SYSGEN time. A maximum 
of 188 background and foreground operational labels 
can be input by the user. The following operational 
labels are defined by RB7; thus, they may not be 
input: 

RM OV 
ML GO 
PI 

Signifies end of background operational label. 

Foreground operational labels or device unit number 
and device-file number equivalents for permanent 
foreground I/O assi gnments. No foreground opera­
tional labels can be assigned to RAD fi les at 
SYSGEN time. 

At this point, SYSGEN will have sufficient infor­
mation to calculate the exact size of RBM. This 
message is output to the operator as an aid in the 
follow-on inputs. If the user has only background, 
he wi II have to input an address for the start of the 
background (i. e. , at least 38 cells greater than the 
RBM LWA output). This value (i. e., + xxxx) can 
be predetermined by using the algorithm given in 
Appendix L. 

SYSGEN 127 



Table 27. SYSGEN Input Options and Parameters (cont.) 

Output Message Input Parameters 

PUB. LIB. FWAt Address 

RES. FGD. FWAt Address 

NONRES. FGD. FWAt Address 

BCKG. FWAt Address 

Description 

If zero has been input for the number of DEFs in the 
Public Library, this typeout will not occur. Other­
wise, the input should reflect the first word address 
of the Public Library (which may be equal to RBM 
LWA). An input of zero is illegal. This value is 
stored in zero table location K:PLFWA. 

First word address of the resident foreground area. 
An input of zero indicates no resident foreground. 
Thisvalue is stored in zero table K:RFFWA. 

First word address of nonresident foreground area. 
An input of zero indicates no nonresident foreground. 
Thisvalue is stored inzero table location K:NFFWA. 

First word address of background memory. This ad­
dress must start on a page boundary (some multiple 
of 10016). This value is stored in zero table loca­
tion K:BACKBG. 

tThese four addresses must be in increasing order. That is, the core allocation must be made in the same order as the 
SYSGEN input. If nonresident foreground is used, it must be at least 218 cells long. This area is used as a buffer for 
the IQ 1 key-in. 

SYSGEN OUTPUT 

MESSAGES TO THE OPERATOR 

The error messages in Table 28 can be output by SYSGEN. 
Note that for input errors (except for an allocation error), 
the corrected input must be made from the KP exclusively. 

BINARY OUTPUT 

If a background PM (Punch Monitor) operational label is 
assigned at SYSGEN time, SYSGEN wi II punch a reboot­
able version of the RBM on the PM device after the last 
parameter has been input by the operator. 

SYSLOAD 

SYSTEM LOAD 

After SYSGEN has been completed, or the rebootable RBM 
deck punched by SYSGEN has been input, control is trans­
ferred to the System Load Processor, SYSLOAD. SYSLOAD 
will initailly output the following message on the OC 
device: 

! ! RBM SYS LOAD 

!! INPUT OPTION 

128 SYSLOAD 

The option to be input on OC should be either one of the 
following: 

or 

PA specifies that patches are to read from the input 
device, with the format xxxxt>oyyyylf>ozzzz]' .. 
! EOD where xxxx is the location to be patched, 
and yyyy and zzzz are the values to be inserted 
at location xxxx. All entries must be four char­
acters long, separated by two blanks. The IEOD 
terminates patching and causes the !!IN PUT 
OPTION message to be output again. The ALL 
or UPD option can then be entered. 

ALL which specifies that a complete system load 
is to occur and nothing on the RAD is to be saved; 

UPD which specifies thatan updated version of RBM 
has been made to replace the existing RAD version. 
Portions of the RAD may have to be reloaded, de­
pending on the new core memory allocation. 

ALLopnON 

An ALL input specifies that a complete system load is to 
occur. A complete load is necessary for the initial genera­
tion or whenever any of the RAD areas has to change size. 

The System Load Processor (SLP) fi rst searches the Master 
Dictionary left by SYSGEN to determine if any RAD areas 
have not been completely defined because of an ALL input 
during SYSGEN. If some areas sti II need their last word 



Table 28. SYSGEN Error Messages 

Message Meaning Recovery 

! ! INVALID PARAMETER Input parameter is out of Retype input with correct value. 
expected range, or maximum 
number of allowable inputs 
have been made. 

! ! FORMA T ERR Input format not valid. 

!! C. T. INT. PRIORITY ERR Control task interrupt is at 
a higher priority level than 
the I/O interrupt level. 

! !I/O ERR An I/O error has occurred 
on the last input. 

! !ALLOCA nON ERR No RA D was defi ned as the 
system RAD. 

TOO MANY AREAS Not enough entries were 
defi ned in the Master 
Dictionary . 

RBM CAN IT BOOT RBM resides on a 7242 disk 
and crosses a cylinder 
boundary. 

!! ILLEGAL OPe LBL. The user has attempted to 
permanently assi gn one of 
the reserved op labels (RM, 
ML, PI, OV, GO). 

addresses defined, SLP will generate this value 50 that the 
Master Di cti onary can now be compl eted. 

At this point a check is made to determine if the check­
point area is large enough to contain the entire background. 
If it is not, the following message will be output: 

CP AREA TOO SMALL 

The CP area wi" be undefined. 

This error is only fatal if an attempt is made to checkpoint 
the background. It can be corrected only by a complete 
SYSGEN, using at least the default size for the check­
point area. 

After the Master Dictionary has been completed, the SLP 
will write zeros on all defined areas of the RAD. This pro­
cess takes approximately 1 minute for a 256-track RAD. 

Retype input with valid format. 

Requires hardware modification, or reassignment 
of Control Task Interrupt to a lower level. 

Correct the problem with the input device and 
retype last input. 

Since this alarm is output only after the END card 
is input (i. e., after the RAD allocation has been 
completed), the user must reallocate all areas 
aS5i gned to the system RAD. The default allocations 
will be restored for the second iteration. The com-
puter will enter a "wait" state so that the error can 
be isolated and corrected unlike other SYSGEN 
errors. The corrected inputs must be made on the 
original input device. 

Fewer entries must be input or more Master Dic-
tionary entries must be made avai lable. In any 
event, RAD allocation must be restored. 

SP must be reallocated during a second RAD 
allocation. 

Retype input with different op label. 

LOADING RBM PART 2 

At this point the SLP outputs the following message: 

! ! LOAD RBM PART 2 

If SLP encounters a track upon which it cannot write, an 
appropriate message wi II be output and that track number 
will be entered in the Alternate Track Pool. For a disk 
device, SLP wi II clear only the first sector of each area, 
and will obtain bad track numbers for the Alternate Track 
Pool from the headers of tracks 4000 to 4360. 

SLP will then write the following into the first sector of 
each area: the area mnemonic, the bounds of the area, 
and a bad track list for all bad tracks on that device. SLP 
will also clear the second sector of each area. 

SYSLOAD 129 



The binary modules making up Part 2 should be input from 
the background AI device (as determined at SYSGEN). 

So that a user does not have to reorganize Part 2 for each 
new SYSGEN, SYSLOAD allows all or Part 2 to be input 
each time, but only loads the routines specified by the 
options selected during SYSGEN. The final module must 
be followed by an ! EOD. The ident from the Extended 
Symbol directive, IDENT, is used to identify each module 
loaded, and is placed in the OV: LOAD table and used as 
the overlay identification. 

RBM PART 2 

The routines making up RBM Part 2 and their idents are 
listed in Table 29. 

Table 29. Routines and Idents for RBM Part 2 

Ident 
Group Overlay (hexadec i ma I) 

Monitor M:ASSIGN A1 
Service M:DEFINE A2 
Routines M:OPEN A3 

M:CLOSE A4 
M:LOAD A5 
M:DOW A6 
M:WAIT A7 
M:CTRL AS 
M:RSVP A9 
M:DATIME AA 
M:COC AB 
RAD Bootstrap AC 

Control Task S:CKPT 1 
Subtasks S:REST 2 

S:LOAD 3 
S:ABORT 4 
S:TERM 5 
S:KEY 7 
S:KEY2 71 
S:KEY3 72 
S:KEY4 73 
S:PMD 8 
S:CCI B 
S:PARPWR FF 
Power Failure B1 

Background BACKCCI 10 

Debug All Overlays 20-2F 

Device- All 30-3F 
Dependent 
Error Recovery 
Routines 

Miscellaneous Core Dump and 
Routines RAD Dump 40 

Hex Corrector 41 
FCT Dump 42 

130 SYSLOAD 

SYSLOAD loads the required overlays, absolutizes them for 
their execution location, and writes each overlay on the 
RAD in an unpacked format. Only one overlay can occupy 
the overlay area in memory at anyone time. SYSLOAD 
stores the RAD address (as a displacement) and the word 
count of each overlay in the RBM OV:LOAD table. The 
OV:LOAD table has the following format: 

OV:LOAD Number of entries 

FWA I Ident 

I Word size } 

First 
entry 

o 4 15 

Consecutive entries 

where FWA is the starting sector number (relative to the be­
ginning of the system processor area) of this overlay. All 
overlays start on a sector boundary. No overlays cross a 
track boundary. 

If an error condition occurs during the loading of the indi­
vidual modules making up RBM Part 2, the following mes­
sage is output: 

XX ERR, ID:YY 

??RETRY? 

where 

XX is one of the followi ng error types: 

XX Error Type 

CS Checksum. 

sa Sequence. 

TY Item type; no external references or 
definitions are allowed. 

BI Binary deck is incomplete. 

OG Origin error; an attempt has been 
made to re-origin a portion of this 
routine to a region already on the 
RAD. 

YY is the ident of the current routine (if the ident 
is unknown, YY == ??). 

The response to the RETRY query can be either N {no} or 
Y (yes). If the response is N, the SLP skips to the next 
routine. If Y is input, the current routine is left as is and 
an attempt is made to continue with the next card; for some 
of the above errors, however, continuing in this manner may 
be undesirable. 



After loading all of RBM Part 2, SYSLOAD determines if all 
required routines are present. If some routines are missing, 
the following alarm is typed: 

! ! MISSING IDENTS: xx xx xx xx ... 

??RELOAD? 

where xx is the ident (Extended Symbol directive IDNT) 
corresponding to the missing routine. 

If Y is input to the reload query, SYSLOAD again reads the 
AI device to load the missing routines. This sequence is 
repeated unti I all required routi nes are loaded or unti I an N 
is input. 

After RBM Part 2 has been loaded, entries wi II then be 
made in the System Processor Di cti onary for RBM, the T rans­
fer Vector Table, and the RBM bootstrap. Each of these 
items is assigned in a separate file in the system processor 
area of the RAD. 

After the nonresident portion of the RBM is on the RAD, the 
resident portion is written. SYSLOAD calculates the lOCOs 
needed to read RBM into core storage and stores the infor­
mation into the last part of the RAD bootstrap. 

After RBM is written on the RAD, the Transfer Vector Table 
wi II be written onto the TVECT fi Ie. The Transfer Vector 
Table contains transfer vectors for Monitor service routines 
and Public Library routines. The amount of RAD space allo­
cated for the TVECT file depends on the maximum number of 
DEFs in the Public Library, which is a SYSGEN input. 

The final program output to the System Processor area of the 
RAD wi II be a copy of the RBM boot~trap that goes into the 
BOOT fi Ie. There is no fi Ie header for the bootstrap, and 
the bootstrap is always restricted to one sector. It is neces­
sary to define the bootstrap as a file, so that it can be ac­
cessed for output during a RAD save or dump operation. 
After the bootstrap is written onto the BOOTfile, it is writ­
ten onto relative sector zero of the system RAD, from where 
it can be bootstrapped into core. Also, a copy of the RAD 
bootstrap may be output to the foreground BOdevice, which 
enables the user to start RBM on any sector of the RAD or to 
boot from a disk pack. If the user chooses to start RBM at 
any sector other than sector zero, he can still reboot RBM by 
loading the RAD bootstrap that was punched on the BO device. 

The next output to the RAD wi II be the RBM Symbol T abl e 
(a file in the System Data area) and the System Data Area 
Dictionary. The System Data Area Dictionary has the same 
format as the System Processor Dictionary and contains the 
following files: 

File Name 

RBMGO 

RBMOV 

Description 

Object module storage for "assemble and 
go" operations. 

Nonpermanent storage for programs to be 
executed. 

File Name 

RBMS2 

RBMSYM 

RBMPMD 

RBMID 

RBMAl 

Description 

Storage for Extended Symbol standard 
procedures. 

RBM Symbol Table of Monitor service 
routines. 

RAD area used by postmortem dump. 

Holds IDNT origins for Debug. 

Used by the accounting routine. 

If a user accepts the default allocation for the RBMGO, 
RBMOV, RBMAL, RBMID, RBMS2, and RBMPMD files, no 
modifications via the RAD Editor have to be made for 
these fi I es. 

The RBM Symbol Table contains the definitions (DEFs) for the 
Monitor service routines. These DEFs are needed by the 
Overlay Loader at load time to satisfy any reference to the 
Monitor service routines. The first word of the table con­
tains the number of bytes in the table, followed by seven 
words per entry, in the same format as in the Overlay 
Loader Symbol Table. 

After the System Load Processor completes its writing of the 
system data area, it moves the RAD bootstrap to memory 
locations 0 through 63 and transfers control to the bootstrap. 
Then the bootstrap goes through its normal loading proce­
dure (described later in this chapter in II Initial Loading of 
System Processors"). 

UPO OPTION (UPDATE) 

The UPD option on the SYSLOAD command specifies that a 
new version of RBM has been made, but that none of the 
areas on the RAD have changed in size. The option can 
also be used when changes are made in any of the following 
input parameters: 

• Publ ic Library (PL) FWA 

• Resident Foreground FWA 

• Nonresident Foreground FWA 

• Background FWA 

UPDshould not be used if any of the RADareas has changed 
in size or location. In this case, a complete SYSGEN and 
SYSlOAD must be performed. Note that a change in the 
background FWA to increase the total size of background 
might cause a change in size of the Checkpoint area, which 
could necessitate a complete new SYSGEN. In this case, a 
CP AREA TOO SMALL al arm would be output for the user's 
information. 

The System Load Processor reads the bootstrap to determine 
where the old version of the RBM is located on the RAD and 
then loads the Monitor Constant Table. The SLP then com­
pares the old load addresses against the new load addresses 
to determine which programs on the RAD must be reloaded. 

SYSLOAD 131 



The size of the new Master Dictionary must be at least as 
large as the old Master Dictionary. If it is not, an error 
message will be output and SLP will continue 

If the new version of RBM exceeds the RAD space allocated 
to the old version, all programs in the System Processor area 
and a II programs that make external references to Monitor 
service routines (MSR) must be reloaded. (Reloading the 
System Processor area is necessary because the RBM is the 
first file in the area.) As the comparison checks are made, 
a subset of the following messages will be typed on OC: 

! !RELOAD 

PUB. LIB. 

RES. FGD. 

NONRES. FGD. 

BCKG. 

SP AREA 

MSR/PL USE RS AN D PL 

NOTHING 

If any of the following modules are relocated on the RAD, 
the contents of other affected areas must be reloaded: 

Relocated Module 

Public library requires 
reloading because its 
load address has 
changed. 

Required Reloading 

All programs that reference the 
Public Library must also be re­
loaded. None of the system 
processors use the Public library, 
and no system processors would 
have to be reloaded. 

Resident or nonresident The appropriate routines must be 
foreground was reloaded in these areas. 
relocated. 

Background was 
relocated. 

New RBM version ex­
c eeds its a II oca ted 
RAD fi I e space. 

TVECT Table load 
address has cha nged. tt 

All system processor and back­
ground user programs must be 
reloaded. (See "Initial Loading 
of System Processors" below.) 

All programs in the system pro­
cessor area must be reloaded. 
(See "Initial Loading of System 
Processors" below.)t 

All programs referencing Monitor 
service routines (MSR) or the 
Public library (PL) through the 
TVECT Table via an external 
reference must be relocated. 

t 
The only areas of the RAD that would never have to be re-

loaded are the system and user I ibrary areas since these 
areas contai n I ibrary programs in relocatable binary format. 

ttThe TVECT load address will change any time the first 
word address of the area adjacent to RBM in core has 
changed. 

132 SYSLOAD 

After these checks are made, The SLP outputs the message 

! !LOAD RBM PART 2 

and proceeds to load the overlays as described earl ier in 
the "ALL Option ". 

After the overlays are loaded, another check is made to see 
if the overlays did not overflow RBM. If the overlays did 
overfl ow into the next area, the follow i ng message is output: 

! !RELOAD 
SP AREA 

After the necessary RELOAD alarms are output for the user's 
information, the SLP will load the Master Dictionary from 
the RAD version of RBM and store it into its allocated area 
in the new version of RBM. The new version of RBM will 
then be written onto the RBM fi Ie, followed by an updated 
bootstrap in the BOOT file, the starting sector of the system 
RAD, and the PM device. Finally, the Transfer Vector 
Table and the RBM Symtol Table will be updated and then 
rewritten on the RAD. 

INITIAL LOADING OF SymM PROCESSORS 

For a complete system load, the first processor that is loaded 
must be the Overlay Loader. The Overlay Loader is coded 
in a sel f-relativizing format and is loaded by the RBM Abso­
lute Loader. An entry in the System Processor Dictionary 
for the Overlay Loader will be made at SYSLOAD time. 

The object module of the Overlay Loader will be loaded 
from the AIdevice and written into its assigned file. The user 
must precede the loading of the Overlay Loader with an SY 
key-in and an !ASSIGN OV=OLOAD,SP control command. 

After the Overlay Loader has been loaded onto its perman­
ent file, it is available °to load a reJocatable binary deck of 
the RAD Editor onto the RBMOV file of the RAD. The RAD 
Editor is then executed via an !XEQ command and makes an 
entry for itself in the System Processor area by means of an 
!# ADD control command. It then should be copied onto its 
defined fi Ie. At this point, the System Processor area of 
the RAD contains the Overlay Loader and the RAD Editor, 
which are the only processors needed to complete the load­
ing of other programs. 

PUBLIC LIBRARY CREATION OR UPDATING 

The Public Library can be created after the Overlay Loader 
and RAD Editor have been loaded and thereafter can be com­
pletely regenerated any time the user desires. A fi Ie with I 
the name PUBLIB will have to be defined via the RAD Editor 
in the User Processor area for the Public library, and a file 
named LIBSYM must be defined in the System Data area of 
the RAD. The relocatable binary decks of all routines to be 
specified as being in the Public library are loaded by the 
Overlay Loader (via the! $PUBLIB control command) and an 
absolute core image version is written by the Overlay Loader 
on the RAD file defined as PUBLIB. Before executing the 
Overlay Loader, the operator must key in SY so that the 
Loader can write in a protected RAD file. 



When a Public Library is successfully loaded, additional up­
dating of RAD files will be done by the Overlay Loader. 
The Public Library Transfer Vector Table will be input from 
the RAD and either created (for an initial load) or updated 
for succeeding loads. This process consists of linking each 
Public Library definition (DEF) in the Symbol Table to a 
transfer vector, and I inking the transfer vector to the value 
of the DEF. When the I inkage is completed, the Overlay 
Loader writes the new Public Library Symbol Table into a 
previously defined file (called UBSYM) in the system data 
area of RAD. For an initial load, this file will be previ­
ously defined, via the RAD Editor, with the name UBSYM. 
The new Transfer Vector Table is then written on the RAD (re­
placing the previous one), and the Loader exits to M:TERM. 
(Note that RBM must be rebooted from the RAD in order to 
load the Public Library into core memory.) The Public 
Library should not be loaded into core (by rebooting the 
system from the RAD) until the user has reloaded all fore­
ground and background routines that use the Library. 

RESIDENT FOREGROUND CREATION OR UPDATING 

In an initial load the resident foreground files must be de­
fined via the RAD Editor. These fi les must be in the User 
Processor area (UP) of the RAD. Also, the parameter on 
the !# ADD command specifying that this is a resident fore­
ground fi Ie wi II have to be set. One RAD fi I e can be de­
fined for each foreground program, thus allowing an update 
to be done on a program basis as opposed to the entire resi­
dent foreground area. On an initial load the Overlay 
Loader reads in a relocatable binary deck of each fore­
ground program, and creates an absolute core image version 
of the program in its predefined RAD file. Foreground pro­
grams assembled as absolute secti ons must be loaded with an 
ABS control command. Prior to executing the Overlay 
Loader, the user may key in SY to specify that the protected 
RAD files can be written on. 

For an update, only those programs being modified need be 
reloaded. However, if a program exceeds its allocated core 
space, other programs must be reloaded and relocated at a 
new absolute address in a different area of core. 

The Overlay Loader (or the Absolute Loader) will store in 
the first sector of each file the appropriate header informa­
tion that the RBM bootstrap needs to load and initial ize each 
foreground program. The information needed by the boot­
strap consi sts of the foil owi ng items: 

1. Load address. 

2. Number of bytes in program. 

3. Entry address of initialization routine (if present). 

If no initialization routine is specified, the RBM bootstrap 
will initialize the task's interrupt level from information in 
the TCB. The task may also be triggered at this point if the 
TCB so specifies. 

After the resident foreground is loaded on the RAD, it 
is brought into core by manually rebooting the system 
from the RAD. It can also be brought into memory by 
inputting a !processor or !XEQ command with OVassigned 
to its RAD file. 

When core is reloaded from the RAD, all newly loaded 
Public Library and/or resident foreground programs will be 
loaded and executed, if appropriate (see the description of 
the RAD bootstrap process at the end of this chapter). 

When it is desired to test a new version of a resident fore­
ground program in core before it becomes permanent on the 
RAD, it can be loaded and executed from the RBMOV fi Ie. 
After the program has been tested, it can be loaded perma­
nentlyon the RAD using the previously described procedure. 

NONRESIDENT FOREGROUND CREATION OR UPDATING 

Nonresident foreground programs can be created or updated 
in their predefined RAD files at any time. The Overlay 
Loader will read in relocatable binary decks of the nonresi­
dent foreground programs, convert their addresses to absolute 
form, and write them into their defined fi les. The nonresi­
dent foreground fi I es wi II be located in the user processor 
area of the RAD, and the definition of the files will be 
accomplished by the commands to the RAD Editor. 

SYSTEM PROCESSOR AND LIBRARY CREATION 

The system processors (Extended Symbol, Rad Editor, Basi c 
FORTRAN IV, Concordance, and Uti I ities) can be loaded 
or updated by the Overlay Loader from relocatable binary 
decks. These processors wi II have their address converted 
to the absol ute locations appropriate for the background 
area and will be written onto their predefined files in the 
system processor area. Any processor can then be executed 
by input of the appropriate !xxx command (where xxx is the 
file name of the processor). 

The System Library will be input in relocatable binary form 
by the RAD Editor and written in relocatable binary form 
onto the system library area of the RAD. The construction 
of several dictionaries in the system library is performed by 
the RAD Edi tor. 

SYSLOAD ALARMS 

In addition to the RELOAD alarms listed previously and 
those concerned with loading RBM Part 2, the alarms given 
in Table 30 can be generated and are unique to SYSLOAD. 

REBOOTING THE SYSTEM FROM RAD 

The system can be rebooted from the RAD by manually 
causing sector zero of the system RAD to be loaded, or by 
reading in the RAD bootstrap previously punched on the 
BO device. The RAD bootstrap will initially move itself 
to high core and then read in RBM from the system pro­
cessor area of the RAD. The information necessary to read 
in RBM is contained in the last cells of the bootstrap and 
is supplied by SYSLOAD when the bootstrap is written on 
the RAD or punched out. After the resident portion of RBM 
is loaded, control is transferred to another bootstrap that 
loads the remainder of the RAD. This bootstrap functions in 
the overlay region of the RBM. 

SYSLOAD 133 



Table 30. SYSLOAD Alarms 

Message Meaning Recovery 

CP AREA TOO SMALL The size of background has changed To perform check poi nt, SYS LOAD wi II have 
and/or RAD area allocated for a to be rerun using the ALL option. 
checkpoint is too small. 

INVALID PARAMETER An invalid input has been made to the Retype either ALL or UPD. 
INPUT OPTION request. 

UNPROTECT RAD One of the write-protect switches has Remove the write protection for the appro-
been set on the RAD for an area that priate area. 
SYSLOAD is attempting to modify. 

EOT ON SP AREA An end-of-tape status has been re- A new SYSGEN wi II have to be run with an 
turned while writing on the SP area. increase in the SP area. 
Not enough room has been allocated 
for the SP area. 

EOT ON SD AREA Same as for S P, except the S D area has Same as for SP. 
overflowed. 

RDdn FAULT A nonexistent address has been given Check RAD allocation parameters in 
for a seek operation. SYSGEN for allocation of more tracks than 

exist on this RAD. Repeat SYSGEN and/or 
SYS LOAD as necessary. 

MASTER DICTIONARY Version of RBM on RAD has a larger Last areas of old dictionary were lost. A new 
OVFLOW Master Dictionary than new version. SYSGEN may be necessary. 

ALT. TRK. POOL OVFLOW Too many bad tracks were encountered Some bad tracks wi II not be in the A I ternate 
duri ng the SYS LOAD process. 

The second bootstrap initially inputs the Transfer Vector 
Table to complete the loading of the resident portion of 
RBM. Next, an attempt is made to assign an operational 
label to the PUBLIB fi Ie in the user processor area. If a 
Public Library is present, the assignment will be made, 
and the bootstrap then inputs the Public Library. The 
bootstrap then searches the User Processor Dictionary for 
all files flagged as a resident foreground file. All such 
fi les are input, one fi Ie at a time, and an i nialization 
routine is executed if one exists. The initialization routine 
can do any required housekeeping (such as repositioning all 
appropriate files), arm and enable the appropriate interrupts, 
and then return control to the bootstrap_ The initialization 
routine is I inked to via the following instruction: 

RCPYI P,L 

It then expects to have control returned to the address in the 
L register. Hence, the bootstrap will read in the resident 
foreground programs, one by one, and execute any initiali­
zation routine. A provision is made to reboot the system 
without loading resident foreground. This is accomplished 
by setting all data keys to -1 just before clearing the 
"wait" state entered by the initial RAD bootstrap. 

134 SYSLOAD 

Track Pool. A new SYSGEN may be 
necessary. 

The system is then completely rebooted and the bootstrap 
sets the protection registers, outputs the following messages, 
and enters a "wait" state. 

! !AFTER I WAIT I SET PROTECT IONI 

! ! SET PARITY TO lINT. I 

!! INT. AND KEY IN lSI TO BEGIN 

If the computer enters a "wait" state before the above 
messages are output, the bootstrap was not successful in 
loading the required data. This would usually be caused 
either by a parity error while reading the RAD or by a 
faulty foreground program. 

The above messages may be inhibited by setting DATA 
switch No.2 prior to execution of the bootstrap. The 
indicated operations must still be performed, however. 

The loading of resident foreground can be inhibited by 
entering -1 in the data switches before executing the 
initial bootstrap. 



12. DEBUG 

INTRODUCTION 

This chapter describes the use of Debug and its interface 
with RBM. 

GENERAL DESCRIPTION 

The RBM Debug package is a debugging tool primarily de­
signed for nonoverlaid background programs, with limited 
facility for foreground programs. It provides the user with 
the following capabil ities: 

1. To transfer control to the control device from a speci­
fied location in the user's program or through the Con­
trol Panel Interrupt. 

2. To dump selected core and registers on the keyboard/ 
printer or the line printer. 

3. To modify memory locations and registers. 

4. To logically insert code at specified memory locations. 

5. To begin or continue execution at a specified memory 
location (i.e., selective execution). 

6. To perform conditional memory dumps {snapshots} of 
registers and selected core locations at a specified 
location and optionally transfer control to the con­
trol device. 

7. To step through a program. 

FOREGROUND USER'S DEBUG CAPABILITY 

Debug can be used to aid the checkout of a foreground 
program operating at priority levels lower than the Con­
trol Panel Interrupt level. In this case Debug must be 
assigned to an interrupt level higher than any level as­
signed to the tasks being checked out. During real-time 
foreground program debugging, no background program 
may be executed and the background space can be used 
as an insertion area. The foreground user is able to force 
an unusual exit from the highest active interrupt level 
be low Debug. 

OVERlAY USER RESTRICTIONS 

When a snapshot is inserted in a currently resident seg­
ment using a Debug control command, the snapshot is 
valid only until the segment is overlaid, since Debug 
operates only at execution time on resident programs. 
This problem is reduced by allowing the user to assem­
ble Debug calls into his program. 

RBM AND FOREGROUND USER'S INTERFACE 

Debug is a subtask of the RBM Control Task with a priority 
just below the IDLE subtask. Debug is triggered by any of 
the three resident Monitor routines (D:SNAP, D:KEY, or 
D:CARD), by the KEVIN subtask, or by the Job Control 
Processor (JCP). JCP triggers Debug when it receives an 
XED command, and the system loader transfers control via 
D:KEY. When a foreground user wishes to use Debug, he 
gives control to Debug by an !XED card or by an unsol i­
cited key-in of DE. After Debug has control, the fore­
ground user defines an interrupt level for subsequent Debug 
use. At this time Debug saves the RBM group code 
(R:RBMWD) and the register bit (R:RBMB), replaces them 
with the computed user's group code and register bit, inhi­
bits interrupts, triggers the new Debug level, and exits (re­
setting inhibit bits) from RBM. The RBM Control Task is 
now operating at a level where Debug can affect the fore­
ground user's program. After debugging, the foreground 
user issues the Debug command Q which restores the RBM 
Control Task to its original level. 

MEMORY REQUIREMENT AND INSERTION 
BLOCK DEFINITION 

The executive portion of Debug is a foreground program that 
may be resident or nonresident. If the program is resident, 
it must be so specified when the Debug file is created with 
the RAD Editor. It is read into core when RBM is booted. 
If the program is nonresident, it is loaded I ike any other 
foreground program (see Chapter 6). Debug has the fol­
lowing core memory requirements: 

1. Executive 

2. Zero table 

3. Overlays 

4. Insertion block 

440 locations 

35 locations 

RBM overlay space 

User-defined 

The insertion block is an area of core that stores user­
inserted code, and the zero table cells are used to refer­
ence these insertions (see Appendix B). 

DEBUG CONTROL 

Control can be given to Debug in the following ways: 

1. A direct call to Debug. 

2. The execution of a snapshot. 

3. An unsolicited key-in of DE. 

4. The Debug execution card (!XED). 

A direct call on Debug is a user-coded request for Debug to 
read a command. The call has the form 

RCPYI 

B 

P,A 

D: KEY or D:CARD 

Debug 135 



When the entry is D:KEY, Debug prints the message 

!! DKEYIN 

A Debug command will then be read from the proper device­
fi Ie number assigned at SYSGEN. 

Note that after the initial direct calion Debug a foreground 
task will have to exit in order to move Debug to a higher 
interrupt. 

D:KEY, D:CARD, D:SNAP (snapshot) are small reentrant 
routines thatactuallytriggerDebug. An unsolicited key-in 
during Debug wi II not harm the user's environment; and if 
a dump was in progress, the key-in will be honored after 
the current line is output. The !XED command performs the 
same function as the !XEQ command except that Debug is 
called via D: KEY before executing the user's program. 

DEBUG COMMANDS 

After Debug has control, it interprets the following 
commands: 

Code 

D 

S 

X 

R 

T 

P 

C 

K 

M 

B 

E 

Function 

Define 

Logically insert code 

Insert snapshot 

Step (move) snapshot 

Remove snapshot or insertion 

Perform selective dump on keyboard/ 
printer and Debug output device 

Perform selective dump on Debug output 
device 

Set Debug input device to the card reader 

Set Debug input device to the keyboard/ 
printer 

Modify memory 

Branch (i .e., return control to program) 

Exit from interrupt level 

Q Terminate Debug 

Debug uses M:READ and M:WRITE for input/output; and 
hence the keyboard character NEW LINE terminates a line, 
EOM deletes a I ine, and cent (i) deletes the previous 
character. Debug interprets the semicolon character (;) 
(if not in the message field of a snapshot) as a continua­
tion character. The semicolon will terminate the line {or 
card and continue the command to the next line (or card). 
Blanks are ignored except within the message field of a 
snapshot. 

136 Debug Commands 

Most Debug commands specify registers and memory loca­
tions. Registers are specified as follows: 

RP Program address register 

RL Link address register 

RT Temporary register 

RB Base address register 

RX Index regi ster 

RE Extended accumulator 

RA Accumulator 

RR All of the above 

Locations are specified in one of the following forms: 

1. One to four hexadecimal digits. 

2. SNAME, where NAME is an IDNT and its value is the 
load origin of such module. The Overlay Loader D 
option must be invoked if the user is to use IDNT names 
with Debug. 

3. Sums or differences of values of either of the above two 
forms. 

Examples: 

A14 
SSQRT 
ABC+$SUB1+1492 
SSUB1 - SSUB2 

If the SNAME option is invoked, the user must define an in­
sertion block (see the Debug Define command, below), and 
the last 180 words of the insertion block are used as a buffer 
for the ID NT names. 

o (Define) 

The Define command is used to define an insertion block 
when the Debug commands S or I or the SNAME option is to 
be used. 

The form of the Defi ne command is 

(D [start, end] [, level] 

where 

start is the memory location of the first cell of the 
insertion block. 

end is the memory location of the last cell of the 
insertion block. 

level specifies the memory location of the hardware 
interrupt level if Debug is to be used forforeground. 
The default level is the RBM Control Task level. 
An unsol icited key-in of FG must be in effect when 
the level is specified. 



(Insert) 

The Insert command designates the insertion of one or more 
instructions logically before (IB), after (IA), or replacing 
(IR) the instruction at the designated location (Ioc). 

The form of the Insert command is 

loc, inst 1'" " inst n 

where 

IB des i gnates Inse rt Before 

IA designates Insert After 

IR designates Insert Repl ace 

The instructions may be designated in one of the following 
forms: 

1. op*loc 

where op isa two-digit hexadecimal value representing 
the operation code and address modification. The sec­
ond digit (i. e., address modification) must be one of 
the following: 

o 
2 

4 

designating direct addressing 

designating indexing 

designating indirect addressing 

6 designating indirect addressing and indexing 

This instruction form relieves the user of creating the 
actual address structure for Sigma 2/3. Itdoesnotapply 
to the conditional branch instruction (operation code 
6) nor to the register copy instructions (operation 
code 7). Debug wi" actually expand an instruction 
designated in this form into more than one instruction; 
for example, 82* 1492 wi" expand into 

8E02 

4802 

1492 

LDA 

B 

DATA 

*$+2, 1 

$+2 

X'1492' 

See Appendix J for a description of the expansions. 

2. 6x*loc 

where x designates the desired conditional branch; 
for example, 6E*1492 designates a BAN 1492 and wi" 
expand into 

6E02 

4803 

4C01 

1492 

BAN 

B 

B 

DATA 

$+2 

$+3 

*5+1 

X'1492' 

See Appendix J for a descri ption of the expansions. 

3. hex value 

which is inserted with no expansion. 

4. Any mnemonic copy instruction in the Sigma 2 and 
Sigma 3 Computer Reference Manuals. The comma 
between the register specifications must be omitted. 

The resul ts of an insertion are defined in Appendix N. 

An example of the insert command is as follows: 

s 

IB SSUB+1000, 80*SSUB+25, 75A1, 40*$SQRT+0,; 

RCPYIPL, ROR* LT, REOR XB 

(Insert Snapshot) 

The Insert Snapshot command inserts (in the same manner as 
the instruction Insert Before) a snapshot at the designated 
location so that when control passes through loc, the fol­
lowing transpires prior to executing the instruction that was 
at loc: 

1. The optional conditions are evaluated, and if false, 
the snapshot is bypassed. 

2. If the conditions are true (or if none are specified), the 
following is output: 

SNAP AT loc 

message (if any) 

followed by the designated dumps. 

Such output is always transmitted to the Debug output de­
vice; and if any of the dumps designate the keyboard/ 
printer, then the SNAP and the message line also wi" be 
transmitted to the keyboard/printer. A user can make a 
maximum of 32 snapshot and instruction insertions. (See Ap­
pendix L for the call ing sequence for a Snapshot command. ) 

The form of the Insert Snapshot command is 

a~) loc [/conditions/] ['messoge'] [,dump requests] 

where 

5 is a request to snapshot and resume execution. 

SK is a request to snapshot and transfer control to 
the keyboard/printer for Debug input. 

SS is the same as SK, but may be stepped (see 
Debug command X. ) 

conditions I 
message 
dump req uests 

are as described below. 

Debug Commands 137 



Conditions. The format of the conditions is 

where r. is a relational expression of the form 
I 

loc lac 
< 

constant [*] > constant 
<= 
>= 

register <> register 

where constant is the same form as a loc preceded by a #; 
for exampl e, 

#1492 or #SSUB+57 

The meaning of the operations in hierarchical order are 
as follows: 

equal 

< less than 

> greater than 

<== less than or equal to 

>== greater than or equal to 

<> not equal 

& logical and 

I logical or 

The comparison is arithmetic unless the operator is preceded 
by an asterisk (*), in which case the comparison is logical. 

Message. Message is a string of any EBCDIC characters ex­
cept quote (I). 

Dump Requests. The format of the dump requests (if any) is 

{

register } '" 
[T] loc 

loc ••• loc 
{

register } 

[T] loc 

loc ••• loc 

where T designates a particular dump to be output on both 
the keyboard/printer and the Debug output device. If T is 
absent, the dump will be output to the Debug output device 
only. Only one dot (. ) is necessary in specifying a block 
of memory locations. Extra dots are ignored. 

An example of the snapshot command is as follows: 

SSSUB+505/RA=# O&1492<1496/,TAB 1 FULL 1
, 

$T AB 1. •• $T AB 1 +256, RR 

X (Step Snapshot) 

If control is at the Debug input device as a result of a 
stepping snapshot (SS), the X command moves the snapshot 

138 Debug Commands 

to memory location n, keeping the same conditions, mes­
sage, and dump requests. Control is then transferred to the 
branch location. 

The form of the Step Snapshot command is 

[, branch]] 

where 

n is the memory location. 

branch is the branch location. 

If the snapshot was executed at location ALPHA, the de­
fault cases are branch = ALPHA and n = ALPHA+ 1. 

R (Remove Snapshot or Insertion) 

The Remove command restores the displaced instruction to its 
original memory location. The command releases the zero table 
entry and, if the entry is the latest snap or insertion, re­
leases its space in the insertion block. Note that the space 
in the insertion block is regained onl y if the Remove com­
mand affected the latest entry in the insertion block. 

The form of the Remove command is 

where loc is the memory location. 

T (Selective Dump on the Keyboard/Printer and the 
Debug Output Device) 

The T command outputs the contents of the requested loca­
tions and registers in hexadecimal on both the keyboard/ 
printer and the Debug output device. Console interrupt 
will transfer control to the keyboard/printer after the cur­
rent I ine is output. 

The form of the T command is 

(T dumps 

where dumps (i. e., dump requests) have the following forms 
(there can be several dump requests in any order separated 
by commas): 

loc $SUB+3 

loc loc $SUB ••. 3FFF 

register RA 

all registers RR 



p {Selective Dumps on the Debug Output Device} 

This command is identical to the T command except that the 
dumps go only to the Debug output device. 

The form of the P command is 

dumps 

c (Debug Input Device) 

The C command gives control to the Debug input de vi ceo 

The form of the C command is 

K {Keyboard/Pri nter} 

The K command gives control to the keyboard/printer. 

The form of the K command is 

M (Modify Memory) 

The M command modifies memory locations or registers. 

The form of this command may be either of the following: 

(M register,word 

where 

loc is the first memory location to modify. 

word i is the hexadecimal value {or mnemonic reg-
ister operation; see item 4 under the Debug I 
command} to be stored in the designated register 
or at location loc+i. 

P if present, is a request to print the hexadecimal 
value of the effective location, its previous val ue, 
and its new val ue. 

T if present, is a request to type the hexadecimal 
value of the effective location, its previous value, 
and its new val ue. 

Examples of the M command are 

1. MSSUB+ 1, 4, 1, SSUB+2, RADDIZE 

where the following cells are modified if SUB is lo­
cated at 100

16
: 

Loc Value 

0101 0004 

0102 0001 

0103 

0104 

0102 

7C68 

2. MRA, SSUB 

Th i s sets the A regi ster to 0100. Note that an MRP 
command will change the program address portion of 
the program status doubleword. 

3. MT 149A, RCPYIPA 

This will produce the following output if the contents 
of location 149A was FFFF prior to the command 
149A: FFFF -75F 1. 

B (Branch) 

The Branch command allows the user to insert loc into the 
program address portion of the program status doubleword 
and to exit from Debug. If loc is not present, the user just 
exits from Debug. 

The form of the Branch command is 

E {Exit From Interrupt level} 

The E command allows the user to force an unusual exit from 
the highest active interrupt level below Debug. Debug wi II 
still have control after this command. 

The form of the E command is 

Q (Quit Debug) 

The Q command causes Debug to reset its internal flags and 
zero table cells, restore RBM's original interrupt level, 
trigger the Job Control Processor, and exit. If the X option 
is present, Debug will also disconnect {i. e., unload} itself 
from the system. 

The form of the Q command is 

Debug Commands 139 



DEBUG ERROR MESSAGES 

Error messag'es are shown below: 

Message 

ERROR SYNTAX 

ERROR COMMAND 

ERROR FOREGRND 

140 Debug Error Messages 

Meaning 

Syntax error 

Command error 

Command attempts to affect 
foreground without a hard­
ware interrupt level specified 
for Debug (see Debug D 
command) 

Message 

ERROR OVERFLOW 

ERROR IN/OUT 

Meaning 

Either insertion block or zero 
table overflow 

Input/output error 

When Debug encounters an error, it aborts a background job 
if there is no ! ATTEND card. Otherwise it requests further 
commands from the keyboard/printer. At this time, Debug 
will not have modified the environment, allowing the user 
to attempt recovery. (It is assumed that the user wi II respec­
ify any erroneous commands.) 

A KEYIN error message issued as the result of an unsolicited 
key-in of DE, or an abort code of DE issued as the result of 
a direct calion Debug, impl ies that Debug is not part of the 
system. This can be corrected by queuing in Debug (i. e., 
an unsolicited key-in of Q DEBUG). 



APPENDIX A. SIGMA 2/3 STANDARD OBJECT LANGUAGE 

INTRODUCTION 

The XDS Sigma 2/3 standard object language provides a means 
of expressing the output of a processor in a standard format. 
All programs and subprograms in this object format can be 
loaded by the XDS Sigma 2/3 Overlay Loader. The complete 
standard object language contains 15 load item types. 

An object module consists of the ordered set of binary rec­
ords generated by an assembly or compi lation for later load­
ing. The Overlay Loader has the facility to load and 
link several object modules together to form an executa­
ble program. 

The Sigma 2/3 RBM System Absolute Loader can load a single 
module (absolute subset) to form an executable program. 
The following load item types from the standard object lan­
guage comprise the absolute subset: 

1 . Record Header 
2. Record Padding (type 0, subtype 0) 
3. Repeat Load (type 0, subtype 1) 
4. Unrelocated Load (type 1) 
5. Start Module (type 4) 
6. End Module (type 5) 
7. Load Origin (type 7) 

This subset is acceptable input to the resident RBM Absolute 
Loader and Overlay Loader. 

DESCRIPTION OF OBJECT MODULES 

GENERAL DESCRIPTION 

An object module consists of a set of binary object records, 
each containing an integral number of load items after a 
standard three-word record header (see Figure A- 1). Each 
binary record in the module is a 120-byte record. 

FF 1 n 

Seq. No. 1 

Checksum 

Load Items First Record 

Nonactive 
Information 

F F I n 

Seq. No. 1 

Checksum 

Load Items Second Record 

Nonactive 
Information 

Figure A-l. Typical Object Module of M Records 

F F I n 

Seq. No. M-2 

Checksum 

Load Items (M- 1 )th Record 

Nonactive 
Information 

9F 1 n 

Seq. No. M-l 

Checksum 

Load Items Mth Record (Last record of modul e) 

Nonactive 
Information 

Figure A-l. Typical Object Module of M Records (cont.) 

Each load item consists of a header word followed by a 
variable number of data words. The first load item in an 
object module is a start-module item and the last item (other 
than record padding) is an end-module item. There are 15 
types of load items, described below. 

BINARY OBJECT RECORD FORMAT 

Each 120-byte binary record in an object module consists of 
these parts: Record Header, Load Items, and Nonactive In­
formation in the following arrangement. The Record Header 
and Load Items are considered the "active" portion of the 
record. 

Record Header 3 words 

Load Item 1 

Load Item 2 

up to 51 words 

"'" ~ 

Load Item n 

Nonactive 
Information 

The "active" portion of the record is that information con­
cerning type, sequence number, checksum and binary data 
usually processed by loaders. The "nonactive" portion may 
contain sequence or identification information, or it may be 
empty. It is not processed by the loaders. 

Appendix A 141 



FORMAT OF RECORD HEADER 

The first byte of the record header may be either X'P or 
X'9'. X' F' del10tes that this is a standard record of the ob­
ject module: X'9' denotes that this is the last record of the 
object module. 

word 0 

Control word 
For 9 I F lOOn n n n n n 

034 7 8 9 10 11 12 13 14 15 

word 

Record sequence no. 

o 2 15 

word 2 

Checksum 

o 15 

nnnnnn in the first word is the number of active words in the 
record, excluding the record header. "Active" denotes data 
to be processed by a loader. There may be some padding 
words or sequence information at the end of the record that 
is not included in the "active" count. The maximum value 
of n is 51. Note that although the physi cal record size is 
fixed at 120 bytes (80 columns of binary data) the number of 
active words may vary from 3 to 54. This effectively stan­
dardizes the reading of binaryobject records but allows ver­
sati I ity in the generation of active data. The record sequence 
number starts at 0 and takes on consecutive integer val ues 
for all the records in one file. The S bit is a sequence over­
ride. If this is a 1, the loader ignores sequence checking 
for the record. The checksum is an arithmetic sum, with 
carry, of the n-3 active words after the record header. If 
the C bit is a 1, the checksum is ignored. 

LOAD ITEM FORMAT 

Each load item consists of a one-word header and an op­
tional variable-length body of data. 

Load Item Header } 
Load Item 

Load Item Data 

FORMAT OF LOAD ITEM CONTROL (Header) WORD 

Every header word has the same general format: 

bits 0-3 Type. 

bits 4-7 Subtype or control. 

bits 8-15 Number of data words in the load item (ex­
cluding item header). 

This number plus 1 is equal to the size of the 
load item. All words of a load item must be 
contained in the same physical record. 

142 Appendix A 

SUMMARY OF LOAD ITEM FORMATS 

RECORD PADDING (Type 0, Subtype 0) 

word 0 

Control word 
o o 010 0 o 0 10 0 0010000 

o 3 4 7 8 11 12 15 

There is no body of data. Padding words are ignored by the 
loader. The object language allows padding as a conve­
nience for processors. 

REPEAT LOAD (Type 0, Subtype 1) 

word 0 

Control word 
o o 010 0 o 1 10 0 o 0 I 0 0 0 

o 3 4 7 8 11 12 15 

word 

Repeat count 

o 15 

This item repeats the next load item a specified number of 
times. The load item (type 1, 2, or 3 only) immediately 
following the repeat load is repeated (i. e., loaded) in its 
entirety the number of times indicated by the data word. 

UNRELOCATED LOAD (Type 1) 

word 0 

10 
Control word 

10 0 o 0 10 0 n n In o o n n n 
o 3 4 7 8 11 12 15 

word 

Fi rst data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words without relocation. 

RELOCATED LOAD-MODULE BASE (Type 2) 

word 0 

Control word 
o 0100 o 0 10 0 n n In n n n 

o 3 4 7 8 11 12 15 



word 

Fi rst data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words with module relocation. The reloca­
tion bias of the current object module is added to each data 
word in the item. 

RELOCATED LOAD-COMMON BASE (Type 3) 

word 0 

I a 
Control word 

0 1 10 0 0 01 0 0 n n I n n n n 
0 3 4 7 8 11 12 15 

word 

Fi rst data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words with a common base relocation. 

START MODULE (Type 4) 

word 0 

Control word 
o o 100 001 n + 1 

o 3 4 7 8 15 

word 

Common size allocation 

o 15 

word 2 

First character Second character 

o 7 8 15 

word n + 1 

{2n-1}th character Last character (or blank) 

o 7 8 15 

This item identifies the start of the object module. The 
characters in words 2 through n + 1 are the program name 
(identification) for the module. 

END MODULE (Type 5) 

word 0 

I a 
Control word 

0 1 10 0 0 r 10 0 0 010 0 
0 3 4 7 8 11 12 15 

word 

Starting address 

0 15 

word 2 

Severity level 

o 15 

word 3 

Relocatable size (or zero) 

o 15 

This item identifies the end of the object module. In the 
control word (word 0), the starting address is defined in 
bit 7 

where 

r = 1 indicates absolute starting address. 
r = 0 indicates relocatable starting address. 

The severity level in word 2 is defined as the highest level 
reached duri ng processing. 

The loader uses the relocatable section size, if present, rather 
than its own location counter to determine the starting loca­
tion for the next relocatabl e section. 

A starting address of absolute 0 indicates there is no starting 
address for this module. 

LOAD ORIGIN (Type 7) 

word 0 

10 
Control word 

1 10 0 0 riO 0 0 010 0 0 1 
0 3 4 7 8 11 12 15 

word 

Origin address 

o 15 

This item sets the origin within the object module. In the 
control word (word 0), the origin is defined in bit 7 

where 

r = 0 indicates relocatable origin. 
r = 1 indicates absolute origin. 

Appendix B 143 



RELATIVE LOCATION POINTER (Type 8) 

word 0 

Contro I word 
o o 0 I 0 0 o r 10 0 o 010 001 

o 3 4 7 8 11 12 15 

word 

Chain base address 

o 15 

This item establishes the chain base for later chain resolu­
tion. In the control word (word 0), the chain base address 
is defined in bit 7 

where 

r = 0 indicates a relocatable address. 
r = 1 indicates an absolute address. 

NAME DEFINITION (Type 9) 

word 0 

Control word 
o o 1 10 0 1 0 I n + 1 

o 3 4 7 8 

word 

Fi rst data word 

o 

word 2 

Fi rst character Second character 

o 7 8 

word n + 1 

15 

15 

15 

(2n-1)th character Last character (or blank) 

o 15 

This item identifies a name as a definition within the object 
module. 

All name definitions immediately follow the start-module 
item and must precede all other load items. For each name 
definition, an address definition should appear later in the 
object module. 

ADDRESS DEFINITION (Type 9) 

word 0 

Control word 
o o 10 0 o r I n + 1 

o 3 4 7 8 15 

144 Appendix A 

word 

First data word definition - address 

o 15 

word 2 

First character Second character 

o 7 8 15 

word n + 1 

(2n-l)th character Last character or blanks 

o 7 8 15 

This item associates a location in the module with a defini­
tion name (characters in words 2 through n + 1) for other 
modu I es to reference. In the contro I word (word 0), the 
definition address is defined in bit 7 

where 

r = 0 indicates relocatable definition address. 
r = 1 indicates absolute definition address. 

EXTERNAL REFERENCE (Type A) 

word 0 

Control word 
o 0100 o r I n + 1 

o 3 4 7 8 

word 

Chain qddress (or zero) 

o 

word 2 

First character Second character 

o 7 8 

word n + 1 

15 

15 

15 

{2n-1)th character Last character (or blank) 

o 7 8 15 

This item states a name (characters in words 2 through n+ 1), 
defined in another module, whose definition address must be 
inserted in a chain of locations within the module. In the 
control word (word 0), the chain address is defined in bit 7 

where 

r = 0 indicates a relocatable chain address. 
r = 1 indi cates an absolute chain address. 

Note: If there is no chain address, the reference address is 
zero and is used for library search i ng purposes on I y. 



SECONDARY REFERENCE (Type B) 

word 0 

o 1 10 n + 1 
o 3 4 7 8 

word 

First data word chain address 

o 15 

word 2 

First character Second character 

o 7 8 15 

word n + 1 

(2n-1)th character Last character (or blank) 

o 7 8 15 

This item states a name (characters in words 2 through n + 1), 
defined in another module, whose address may be inserted 
in a chain of locations within the module. This item is iden­
tical to type A, above, except that it does not force loading 
of the routine from the I ibrary. In the control word, the 
chain address is defined in bit 7 

where 

r = 0 indicates a relocatable chain address. 
r = 1 indicates an absolute chain address. 

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub­
types 0, 1, 2, and 3) 

word 0 

Control word 
o 0 100 q r 10 0 o o 0 o 

o 3 4 7 8 

word 

Resolution address 

o 

word 2 

Chain address 

o 

o 
15 

15 

15 

This item defines a location within the module (called the 
resolution address) whose address must be inserted in a chain 
of displacement fields within the module. In the control 
word, the chain address is defined in bit 6 

where 

q = 0 indicates a relocatable chain address. 
q = 1 indicates an absolute chain address. 

The resolution address is defined in bit 7 

where 

r = 0 indicates a relocatable resolution address. 
r = 1 indicates an absolute resolution address. 

An address I iteral chain is a threaded I ist of forward refer­
ences to a singl e location in a program. The definition 
value (called the resolution address) can be output as an 
address literal chain resolution (Type C, subtypes 0, 1, 2, 
and 3). The chain address points to the beginning of the 
threaded list which is terminated by an absolute zero value. 
The resolution address and the chain address may be absolute 
or relocatable. 

Note: Because the terminator of the chain is zero, no pro­
gram may have an address literal chain whose last 
link is at absolute zero (i. e., the item would refer­
ence zero and would thus appear to terminate the 
chain). 

Note that external reference (REF) (type A) and secondary 
reference (SREF) (type B) chains are structured in the same 
manner, but resolved by the loader using an external defi­
nition value (type 9). 

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes 
6, 7, A, and B) 

word 0 

Control word 
o olp p q riO 0 o 010 o o 

o ;3 4 7 8 9 11 12 15 

word 

Resolution address 

o 15 

word 2 

Chain address 

o 15 

This item defines a location (called the resolution address) 
within the module whose relative displacement must be in­
serted in a chain of displacement fields within the module. 
In the control word, the displacement chain is defined in 
bits 4-5 

where 

pp = 01 indicates that an indirect bit is not set in each 
instruction in the displacement chain. 

pp = 10 indicates that an indirect bit is set in each 
instruction in the displacement chain. 

q = 1 always indicates absolute displacement of the 
last item in the chain (relative to the chain 
base declared in item type 8). 

Appendix A 145 



The resolution address is defined in bit 7 

where 

r = 0 indicates a relocatable resolution address. 
r = 1 indicates an absolute resolution address. 

When forward references occur during one-pass processing, 
and the possibi I ity of resolving the reference by a definition 
or literal may occur within 255 locations, the a-bit dis­
placement field of the instruction may be used to form a 
displacement chain. The item types a (relative location 
pointer - establ ish chain-base) and C (displacement-chain 
resolution) must be used together to resolve the chain by 
substituting actual displacements determined at load time. 

In the creation of a displacement chain, the pointer in the 
type a item defines the relative location in the program to 
be establ ished as the chain base. Each new type 8 item can 
define a new chain base. The values in the displacement 
field of the instructions included in any given displacement 
chain refer to the absolute displacement of that instruction 
relative to the currently established chain base; e. g., ifthe 
chain base is establ ished to be XI 1001 and an instruction is 
located at X' 1251

, the displacement of that instruction for 
purposes of the displacement chain is X'125 1-X ' 100' or X'25 1

• 

This point is emphasized since the loader will use this dis­
placement only to determine the final displacement of the in­
struction relative to the location of I iteral or target locations. 

When the displacement chain connects instructions that ref­
erence a literal or a specific target location within range of 
the chain base (e. g., lDA=3 lDA=lAB, B XR), no indirect 
bit is set in each instruction (pp = 01 in Header - Type C). 

When the chain connects references to an external symbol 
or forward reference whose value will be given in some lit­
eral within range of the chain base, pp is set to 2 in the 
type C header, to set the indirect bit in each instruc­
tion in the chain (e.g., LDA X, which will be resolved 

as lDA *$+n, where n is the displacement of ADRl X rel­
ative to the instruction). 

The chain base address (in the type a item) may be declared 
as an absolute or relocatable value. The resolution address 
(first data-word of a Type C item) is the address of the target 
location or I iteral expressed as a location, and not as a dis­
placement on the chain base. Note that although the reso­
lution address is defined at this point, the value of the literal 
at that resolution may not be defined until later. In fact, it 
may be an element of an address-literal chain (type C) or 
external reference chain (type A). The address-literal or 
external chain resolution is independent of the displacement 
chain resolution. 

The chain address given in the second data word is the ab­
solute displacement of the last item in the chain, relative 
to the chain base decl ared in type a (e. g., if the effective 
chain base were XI 1000 1 and the value of the chain address 
were X'20', the last item of the displacement chain would 
be located at XI 10201

). 

A separate displacement chain will be created for each 
unique variable in a given displacement region. Thus, many 
displacement chains may be bui It using the same chain base. 
As a matter of fact, the chain base may not be changed unti I 
a displacement chain resolution item has been output for 
each displacement chain. An unresolved displacement chain 
is a serious error condition in the output, and is unaccept­
able for execution. 

The format of the displacement chain is described in the 
example in Figure A-2. 

Example: let a chain base be declared at 109(R). (Numbers 
given are decimal.) It is assumed that the ADRl for XLB 
will be ultimately loaded at 140(R). Note that the displace­
ment field of each instruction before resolution is a pointer 
to the location of the next item in the threaded I ist relative 
to the chain base. 

Relative Displacement 
Displacement Displacement 
Fi eld of Instruc- Field of Instruc-

location Symbolic From Chain 
tion Before tion After 

Counter Base 
loading Resolution 

110 lDA XLB 1 00 (end of chain) 30 (140-110) 
125 STA XLB 16 01 15 (140-125) 
134 CP XlB 25 16 06 (140-134) 
136 STA XlB 27 25 04 (140-136) 
140 

I 
Item Type C, Displacement 

I Chain Resolution 

I Resolution Address 140(R) I 

I Chai n Address 27(A) I 
Figure A-2. Displacement Chain Format 

146 Appendix A 



APPENDIX B. SYSTEM ZERO TABLE AND CONSTANTS 

Table B-1. Monitor Zero Table 

Address 

Dec. Hex. Name Purpose and Assignment 

0 0 Reserved for Monitor Use. 

1 1 K:AC Pointer to Current Floating Accumulator. 

2 2 K:ACl Pointer to Current Floating Accumulator (1). 

3 3 K:AC2 Pointer to Current Floating Accumulator (2). 

4 4 K:AC3 Pointer to Current Floating Accumulator (3). 

5 5 K:FFLG Pointer to Current Floating Flags. 

6 6 K:BASE Pointer to Current Task Reentrant Temp Stack. 

7 7 K:TCB Pointer to Current Task TCB. 

8 8 R:IOP Pointer to 8-word lOP Table. 

9 9 Standard Constants for Foreground, Monitor, and Background 
Use (see Table B-2 for complete list). 

63 3F 

64 40 lacs Pointers and Constants. 

99 63 

100 64 Reserved for Monitor Use. 

132 84 

133 85 Debug Transfer Vector D:KEY. 

134 86 Debug Transfer Vector D:CARD. 

135 87 Debug Transfer Vector D:SNAP. 

136 88 Reserved for Debug Use. 

167 A7 

168 A8 Real-Time Foreground User Storage (reserved for foreground 
commun i cati on between foreground and background or for 

194 C2 
address literals or constants). 

Appendix B 147 



Table B-1. Monitor Zero Table (cont.) 

Address 

Dec. Hex. Name Purpose and Assignment 

195 C3 Power OFF. 

196 C4 Power ON. 

197 C5 Integral lOP timeout. 

198 C6 Watchdog Timer timed out. 

199 C7 Monitor Service Routines Transfer Vectors (see Table 7 for list). 

231 E7 

232 E8 Monitor Constants (see Table B-3). 

. 
251 FB 

252 FC Counter Interrupt Locations (optional). 

255 FF 

Table B-2. Standard Constants 

Address Value Address Value 

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex. 

9 9 32768 8000 20 14 16 10 

10 A 16384 4000 21 15 8 8 

11 B 8192 2000 22 16 4 4 

12 C 4096 1000 23 17 2 2 

13 D 2048 800 24 18 1 1 

14 E 1024 400 25 19 0 0 

15 F 512 200 26 1A -1 FFFF 

16 10 256 100 27 1B -2 FFFE 

17 11 128 80 28 1C 3 3 

18 12 64 40 29 1D -3 FFFD 

19 13 32 20 30 1E -4 FFFC 

148 Appendix B 



Table B-2. Standard Constants (cont.) 

Address Value Address Value 

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex. 

31 1F 5 5 48 30 14 E 

32 20 -5 FFFB 49 31 -14 FFF2 

33 21 6 6 50 32 15 F 

34 22 -6 FFFA 51 33 -15 FFF1 

35 23 7 7 52 34 -16 FFFO 

36 24 -7 FFF9 53 35 32767 7FFF 

37 25 -8 FFF8 54 36 32512 7FOO 

38 26 9 9 55 37 33023 80FF 

39 27 -9 FFF7 56 38 65280 FFOO 

40 28 10 A 57 39 255 OOFF 

41 29 -10 FFF6 58 3A 61440 FOOO 

42 2A 11 B 59 3B 3840 OFOO 

43 2B -11 FFF5 60 3C 240 OOFO 

44 2C 12 C 61 3D 49152 COOO 

45 2D -12 FFF4 62 3E 31 1F 

46 2E 13 D 63 3F 127 7F 

47 2F -13 FFF3 

Tab I e B-3. Monitor Constants 

Address 

Dec. Hex. Name Purpose 

226 E2 K:IOCS Pointer to IOCS Tables. 

227 E3 Reserved for Monitor use. 

228 E4 K:MASTD Pointer to Master Dictionary. 

229 E5 K:PAGE Number of lines/Printer Page (SYSGEN Parameter). 

230 E6 K:BACBUF Background I/O Buffer Pool FWA. 

231 E7 K:BACKP Protected Background FWA (Start of TCB). 

232 E8 K:VRSION RBM Version. 

Appendix B 149 



Table B-3. Monitor Constants (cont.) 

Address 

Dec. Hex. Name 
t 

Purpose 

233 E9 K:PLFWA Public Library FWA. 

234 EA K:RFFWA Resident Foreground FWA. 

235 EB K:NFFWA Nonresident Foreground FWA. 

236 EC K:BACKBG Unprotected Background FWA. 

237 ED K:UNAVBG Unavailable Memory FWA. 

238 EE K:BLOCK Size of Blocking Buffer in Words (180 or 512). 

239 EF K:FEF FORTRAN Background Error Severity (1). 

240 FO K:TVECT Pointer to Transfer Vector Table. 

241 F1 K:FWA Legal TVECT Entries to FGD-FWA. 

242 F2 K:LWA Legal TVECT Entries to FBD-LWA+ 1. 

243 F3 F:FWA1 TVECT FWA for T Regi ster Check. 

244 F4 K:LWA1 TVECT LWA+ 1 for T Register Check. 

245 F5 K:OLOAD Pointer to RBM OV:LOAD Table. 

246 F6 K:MTMP Size of Nondynamic Storage, in Words (6). 

247 F7 K:CCBUF Address of Control Card Buffer. 

248 F8 K:NRFQ Pointer to Nonresident Foreground Queue Table. 

249 F9 K:NEXT Next Available Sector in BT Area. 

250 FA K:PROTCT Pointer to Protection Register Table. 

251 FB K:PMDTBL Pointer to Postmortem Dump Table. 

tThese names are as defined in the RBM Monitor and are not system definitions. Any references to these locations by 
these names must be defined in the user program (e.g., K:IOCS EQU X'E2'). 

Relationships for Monitor Constants: 

1. (K:PLFWA) = LWA+1 of RBM. 4. (K:BACKP)= LWA+1 of Nonresident Foreground. 

2. (K:RFFWA) = LWA+1 of Public Library. 5. (K:BACKBG) = (K:BACKP) + 39. 

3. (K:NFFWA) = LWA+1 of Resident Foreground 6. (K:CCBUF) = (K:UNAVBG) - 62. 

150 Appendix B 



APPENDIX C. RBM SYSTEM ABORT CODES 

The abort codes given in Table C-l are the standard abort 
codes output by the Monitor, Basic FORTRAN IV Compil er, 
Extended Symbol assembler, Uti lity Subsystem, and RAD 
Editor (see also supplementary control command diagnostics 
in Appendix D). • 

OVERLAY LOADER ABORT CODES 

The abort codes given in Table C-2 wi II be output by Over­
lay Loader which will then exit via a call to the RBM 
routine M:ABORT. 

LOADER I/O ABORT MESSAGE 

The I/O abort message has the following format, followed 
by the message "ABORT 10 location": 

oplb device type and number diagnosti c 

where 

oplb is the operational label of the device or file 
on which the error occurred. 

devi ce type and number 
label. 

pertain to the operational 

diagnostic is an error diagnostic corresponding to 
an I/O completion code.t 

tSee Table 10, "I/O Completion Codes", in Chapter 4. 

The following diagnostics may be used: 

UNRECOVERABLE I/O ERROR 

CALLING SEQUENCE ERROR 

INVALID OPERATIONAL LABEL 

OL = 0, OR OPERAT MEANINGLESS 

ILLEGAL END OF FILE 

END OF TAPE 

INCORRECT RECORD LENGTH 

ILLEGAL BUFFERING 

WRITE PROTECTED 

BEGINNING OF TAPE 

ILLEGAL RAD SEQUENCE 

BLOCKING BUFFER UNAVAILABLE 

An example of the I/O abort message is given below: 

BI MTDO 

ABORT 10 

where 

END OF TAPE 

3F4C 

BI is the oplb. 

MTDO is the device type and number. 

END OF TAPE is the diagnostic. 

3F4C is the ABORT 10 location. 

Table C-l. RBM Abort Codes 

Code Meaning 

AE Assignment error during loading; improper I/O assignment or invalid format. 

AI Irrecoverable I/O error on device assigned to operational label AI. 

BI Irrecoverable I/O error on BI device. 

BO Irrecoverable I/O error on BO device. 

CC Error in control cards or in sequence of job stack. 

CK Irrecoverable error while checkpointing. 

CS Checksum error from absolute or relocatable binary input. 

Appendix C 151 



Code 

DE 

ER 

ES 

FC 

FS 

GO 

IE 

10 

LO 

OP 

OV 

PE 

PU 

PV 

RE 

RS 

SI 

SQ 

TL 

TS 

TY 

UT 

XE 

XS 

Table C-l. RBM Abort Codes (cont.) 

Meaning 

Debug not resident when request~d. 

Operator-recognized error condition. 

FORTRAN library abort 

Illegal FORTRAN control card. 

t 
FORTRAN abort. 

Irrecoverable error on output to the GO fi Ie when using a ! REL command. 

Error in input deck. (Usually, a negative ORG item has been input.) 

Irrecoverable I/O error. 

Irrecoverable I/O error on LO device. 

Operator abort, from unsolicited key-in. 

Problem with device assigned to operational label OV. (Normally, OV is assigned to the RAD.) 

Parity error in background (perhaps attempting to read from unavailable memory). 

Number of argument greater than temporary storage in M: PUSHt. 

Protection violation. 

RAD Editor abortt. 

Irrecoverable error during restart. 

Irrecoverable input error in SI device. 

Sequence error in absolute or relocatable binary deck. 

Background program time I imit exceeded. 

Temp stack overflow. 

Invalid load type in ABS deck. 

Uti I ity subsystem abortt. 

Fatal error in loading. 

t 
Extended Symbol abort . 

t After the abort code is output, the processor wi II exit via the RBM routine M:ABORT. 

Notes: 1. 

2. 

The processing of the job stack is discontinued following any abort. If an ! ATTEND control command 
was in effect, the Monitor will enter an "idle" state. This will allow the operator to correct the problem 
and restart the job. If not in "attend", the Job Control Processor will read commands until a !JOB or 
! FIN command is encountered. All control commands encountered prior to the !JOB or ! FIN command 
will be logged in with an indication (">" will precede the command) that they have been ignored. 

If integral lOP timeout occurs, RBM checks foreground mailbox X'C5' for a watchdog receiver. If a re­
ceiver is specified, RBM branches to it; otherwise, RBM halts with the address of the interrupt in the 
accumulator. An integral lOP timeout indicates hardware difficulties. 

152 Appendix C 



Table C-2. Overlay loader Abort Codes 

Code Meaning 

A 1 Error in accessing the RBMSYM file. 

A2 Error in accessing the LIBSYM file. 

A3 Error in accessing the EBCDIC library file. 

A4 Error in accessing the DEFREF library file. 

A5 Error in accessing the MODIR library file. 

A6 No blocking buffer is available for the RBMID file. 

A8 Error in accessing the TVECT file. 

A9 Error in closing the RBMID fi Ie. 

BB Cannot use RS' op label because it is already used by Overlay loader. 

CM A COMMON displacement or size larger than that stipulated on the ! OlOAD command or in a start item 
was detected. (Background abort only.) 

CR A non-COMMON item was relocated into COMMON. This condition only occurs when an actual data 
item is to be stored into COMMON. 

DS The same identifier was used to name two different segments. 

EF An illegal end-of-file was detected. 

IT An illegal item type was detected. 

LI The library files cannot be loaded because of incorrect construction of the library. 

On An Overlay loader function that prevents proceeding has occurred. The number of the overlay in which 
the malfunction occurred is indi cated by n. 

Pl Overlay loader was unable to write the Publi c library, the UBSYM, or the TVECT fi les onto the RAD. 

RS Overlay loader unable to correctly read the RBMSYM file from the SD area. 

SA Not enough segments were allocated for the task. The segments parameter of the! OlOAD command 
should be larger. 

SD Next segment of the Overlay loader cannot be loaded. 

SE Input ROM had an error severity level greater than zero. 

SG Format or parameter error was detected on a !$SEG command. 

Sl The length of a segment was excessive, (see !$ROOT and !$SEG commands for maximum segment size). 

TO There was a table overflow. Decrease the size of the program or reduce the number of external symbols. 

UN The number (on the !$SEG card) of the segment to which this one is attached has not been defined. 

Appendix C 153 



APPENDIX D. CONTROL COMMAND DIAGNOSTICS 

The following error messages may appear on the background 
DO device as a result of an error condition detected by the 
JCP. These diagnostics supplement the abort or attend error 
codes printed by the JCP. 

Message 
Comments/ 
Associated Commands 

• BK OPLB/DFN TBL FULL ASSIGN, DEFINE, default 
assignments for system 
processors 

• FG OPLB/DFN TBL FULL ASSIGN 

· ILL C:CODE 

· ILL C:TCB 

· ILL RAD SEQUENCE 

• INV COMMAND 

154 Appendix D 

C: (Connect) 

C: (Connect) 

WEOF, REWIND, UNLOAD, 
FBACK, FSKIP, RBACK, RSKIP 

Command not recognized as 
a Monitor service command, 
system processor, or user 
processor. 

Message 

· INV OPLB OR DFN 

• INV OPTION 

· NO 'FG' KEY-IN 

• NO ISyl KEY-IN 

Comments/ 
Associated Commands 

ASSIGN, DEFINE, WEOF, 
REWIND, UNLOAD, FBACK, 
FSKIP, RBACK, RSKIP 

An invalid option has been 
encountered on a Monitor 
servi ce command 

ASSIGN, XEQ,C: 

WEOF, ABS, REL 

.OP NOT MEANINGFUL WEOR, REWIND, UNLOAD, 
FBACK, FSKIP, RBACK, 
RSKIP 

· RAD TEMP OVERFLOW DEFINE, default assignments 
for system processors 



» 
""0 
""0 

CD 
::J 
0-

X 
m 

The following table should be used to determine the standard assignments for an installation's RBM operational labels and to determine which operational 
labels, if any, should be suppressed by being assigned to file O. The RBM operational labels are defined under the !ASSIGN command in Chapter 2. 

~ RBM Operational Device 
CC SI UI AI BI BO UO LL DO 

and Labels Number 1 
Processors 

RBM Read/Write Read Read Read Object Write Control 
unsolicited Control Absolute modules with Command 
key-in Commands Binary ! REL command Images 

XSYMBOL [Read Control Read Source Write Reloc. Used for CC Write XSYMBOL 
commands] Statements Binary Diagnostics Error Messagestt 

Concordance Read Source Write Concordance 
Statements Error Messagestt 

Basic FORTRAN IV Read Source Write Reloc. 
Statements Binary 

Math Library 
Write Library 
Error Messages 

Overlay Loader Read Write Map, Loader 
Control Error Messages and 
Commands Control Command 

Images tt 

RAD Editor Read Object Module Output Copies of Ob- Write Error Mes-
Control Input to System ject Modules from Sys- sages, Control 
Commands and User tem and User Libraries Commands and 

Libraries operator key-ins 

Uti I ity Executive Read Read Write Utility Error 
Control Message and Con-
Commands trol Command 

Images tt 
--

Utility Copyt Read Control Read 
Commands Input 

Utility RECEDIT 
Read Control 
Commands and Read Write 

Modific Input Input Output 

Utility OMEDIT Read Control Read Read Binary Write 
Commands Input Modific. Input Output 

Uti I ity DUMP Read Control Read 
Commands Input 

Uti I ity SEQED IT Read Update Read Write 
Data Input Output 

t May use any op label for output. 

ttSuppressed if assigned to same device as LO. 



» 
""0 
""0 

(1) 
:::s 
Q.. 

)( 

m 

~ RBM perational 
and Labels 
Processors 

RBM 

XSYMBOL 

Concordance 

Basic FORTRAN IV 

Math Library 

Overlay Loader 

RAD Editor 

Utility Executive 

Utility Copy 

Utility RECEDIT 

Utility OMEDIT 

Utility DUMP 

Utility SEQEDIT 

LO 

WRITE Listing 
Output and 
XSYMBOL 
Error Messages 

Write Listing 
Output and 
Concordance 
Error Messages 

Write Listing 
Output and 
FORTRAN 
Error Messages 

Write Library 
Error Messages 

Write Maps 
and Dumps 
of Files 

Write Utility 
Error Messages, 
Control Com-
mand Images and 
other Output 

Write Modi-
fication Log 

Write Module Log 

Write Dump 

Write Listing 

LI PM OC 

Write Abso- Write Proces-
lute Binary sor and Mon-
Monitor (SYS- itor Abort 
GEN only) Messages 

Operator 
Commu-
nications 

Operator 
Commu-
nications 

Read Reloc. Operator 
Binary Commu-
Library Fi Ie nications 

Operator 
Commu-
nications 

Operator 
Commu-
nications 

Xl PI OV X2 X3 S2 GO X4 X5 

Read RBM Write Pro- Write Ob-
Overlays gram Loaded ject Mod-

by lABS ule with 
Command !REL 

command 
---

Intermediate Read Output Output Output Output 
Output XSYMBOL Encoded Program Standard Execution 

Overlays Text Locals Proce- Object 
dures Language 

Intermediate Read Output 
Output FORTRAN Execution 

Overlays Object 
Language 

Contains Sym- Read Write Read 
bol Table for OLOAD Core Reloc. 
each segment Overlays Images Binary 

Replace Fi I es Read RAD Replace Maintain Li- Maintain 
and Maintain Editor Files and braries and Libraries 
Libraries Overlays Maintain Update Di-

Libraries rectories 

Read Prestore 
Utility Commands 
Overlays From 51 

Input 
for 
Verify 

Prestore BI 



APPENDIX F. CHARACTER-ORIENTED COMMUNICATIONS (COC) EQUIPMENT HANDLER 

This appendix describes the interface of RBM with the Xerox 
character-oriented communications (CaC) equipment.t The 
COC equipment provides communication between Sigma 2/3 
real-time programs and various terminal devices. The cac 
consists of a controller and from one to eight attached line 
interface units, with each unit containing from one to eight 
send-and-receive modules. The Sigma 2/3 RBM can accom­
modate one COC, which gives the user up to 64 lines each 
with send-and-receive equipment. The terminal devices 
supported (one per line) can be Teletype Models 33, 35, 
or 37. Other terminals can be connected but they must use 
ANSCII control codes, and a" editing must be done by the 
user program. 

The computer requirements for use with the cac equipment 
are as follows: 

1. RBM with at least 16K of core memory. 

2. One buffered input/output channel dedicated to the 
cac controller. 

3. Two external interrupts dedicated to the COC 
controller. 

4. External interface feature. 

DESCRIPTION OF CDC PACKAGE 

The COC software package allows messages to be communi­
cated via the character-oriented equipment, and consists 
of two sections - M:COC and RCOC. 

M:COC M:COC is a Monitor service routine that initi-
ates a" read, write, and control operations. It is part of 
the RBM overlays and requires no modification by the user 
before use. (M:COC is described in detail in Chapter 4.) 

RCOC RCOC consists of the following tasks and tables 
that make up a resident foreground program: 

1. An initialization routine. 

2. A real-time task connected to the input interrupt of 
the communications controller, which edits and trans­
I ates input characters, echoes'the characters if re­
quired and forms input messages. 

t 
See Xerox Sigma Character-Oriented Communications 

Equipment Reference Manual, Publication 90 09 81, for a 
description of the equipment involved, the possible con­
figurations, and the various uses for the equipment. 

3. A real-time task connected to the output interrupt of 
the communications controller, which transmits out­
put messages and editing characters at end-of-message 
(EOM). 

4. Conversion tables (ANSCII to EBCDIC, and vice 
versa). 

5. An input buffer (overlays the initialization routine). 

RCOC must be assembled separately for each installation 
unless the default cases for the installation specific assem­
bly parameters agree with the parameters desired. The 
assembly parameters are as follows: 

1. The devi ce number of the COC (buffered input/output) 
(default = 7). 

2. The COC number (direct input/output) (default = 0). 

3. The input interrupt level (even number of the even-odd 
pair) (default = 110). The output interrupt level is 
assumed to be the odd number. 

4. Number of lines used (n), where a" line numbers 0 to 
n-1 are assumed to be used (default = 1). 

CDC OPERATION 

RCOC is a resident foreground program and must reside on 
either the SP or UP area of the RAD. It is read into core 
memory and operated whenever RBM is rebooted. The 
RCOC initialization routine turns on a" transmitters and 
receivers, arms and enables the input and output interrupts, 
initiates input from the COC controller into a wraparound 
buffer, and exits. At this point, all lines are set to the 
"disconnected" status, ready to be connected and used by 
the real-time programs. Input is initiated and an input in­
terrupt is generated for each character input, but the data 
are ignored until the line is connected and a read request 
is given. 

A" line-control and read-or-write operations are initiated 
by calls to M:COC. A request to read merely causes the 
line status to be set to "read", which in turn causes the 
input interrupt routine to accept input from that line and 
build the input message in the user's buffer. A request to 
write causes M:COC to turn on the transmitter and transmit 
the first character in the user's buffer. Thereafter, an output 
interrupt is generated once each "output word time" (i. e. , 
once each time the transmitter can transmit). The output 
interrupt routine transmits characters from the user's buffer 
until the entire message is sent and then turns off the 
transmitter. 

As each input or output message is completed, the status of 
the line is set to "message complete" and an EOM Receiver 
(if present) is operated at the input or output interrupt level. 

Appendix F 157 



The receiver should trigger the requesting task and return 
to the location contained in the L register. 

AUTOMATIC DIALING 

If the Automatic Dialing Equipment (ADE) is included, 
real-time tasks can dial a terminal and connect it to a 
predetermined COC line. The ADE is a multiunit con­
troller that controls up to 16 dial positions. It requires a 
dedi cated buffered lOP channel. 

The dialing operation can be accomplished via M:IOEX. 
A TDV should first be performed to ensure that the dial 
position is available. Then an SIO can be issued to acti­
vate the ADE and address the dial position. Any order byte 
wi II be interpreted as a "write". The memory buffer con­
tains the number of the data set being dialed (two bytes 
per word; each digit occupies the rightmost four bits of the 
byte in four-bit BCD). After the dialing procedure has been 
completed, the task should check the status of the COC 
line before attempting to send or write on it. 

158 Appendix F 

RESTRICTIONS 

The priority of the input/output interrupt pair must be 
higher than any program using its services via M:COC 
and should also be higher than other real-time programs 
with long execution times. If a program with a higher 
interrupt priority runs for a long period of time, the 
input buffer may become filled and data may become 
lost. The output data would be delayed but no data 
would be lost. 

All COC lines (i. e., assembly parameters) are assumed to 
be operational. The RCOC initialization routine will 
loop, attempting to turn the receiver on for a nonexistent 
COC line number. 

If automatic dialing is included, the user must include 
M:IOEX during SYSGEN and must input the dialing posi­
tions as XX type devices. 



APPENDIX G. SYSGEN AND ASSEMBLY TIME OPTIONS 

The optional RBM capabilities below are obtainable as a 
package in response to the SYSGEN query INC. MISC. 
At least 100 (decimal) additional resident core memory 
locations are required. 

HEXADECIMAL CORRECTOR CARDS 

Patches may be loaded at execution time for either the 
Monitor itself or any user program. All corrector cards 
have the form 

aaaa cccc
1 

[cccc
2 
... cccc

n
] [*comments] 

where 

aaaa is the first (or only absolute core memory 
location to be modified. 

cccci are the desired (hexadecimal) contents of 
aaaa and the following n-1 locations. 

Patches are loaded from CC in one of two ways: 

1. Following a HEX control command. 

2. Following an unconditional H key-in. 

All corrector decks are terminated by an EOD control com­
mand. To patch relocatable programs, a bias card may be 
used. Its form is 

+bbbb 

where bbbb is the bias and the followi ng correctors are 
loaded relative to that location. Any value (on a cor­
rector card following the bias card) preceded by a plus 
(i. e., +CCCCj) will have the bias added to it. 

To patch program segments/ Data Switch 0 must be placed 
in the Ill" state. This causes the RBM to type "BEGIN 
SEG xx" (where xx is the segment number; XX = 0 for the 
root) and go into an idle state after each segment is loaded. 
Correctors can then be loaded to the segment following an 
H key-in. An S key-in will cause RBM to resume operation. 
The ability to type the message "BEGIN SEG XXII is deter­
mined when RBM is assembled and is not related to the in­
clusion of the "MISC." routines. 

THREE-CHARACTER PROCESSOR SEARCH 

An assembly time option exists for the Job Control Processor 
(which does not increase resident RBM) to identify a 
processor from the first three characters input. 

When the Control Command Interpreter encounters a pro­
cessor request such as IXSYMBOL, a search is first made 
of the system, then the user processor area, to locate the 
file whose name matches the requested processor exactly. 
Normally, if this search fails, the Monitor aborts the job. 
However, if this assembler option has been selected, the 
request is then truncated to three cha racters (i. e., I XSY) 
and the search of the system and user processor areas is 
repeated. Thus, if Extended Symbol has been defi ned on 
the system processor area of RAD as the three-character 
name IXSY, either a request of lXSYMBOLor ISXYwill 
locate the system processor. 

tAn optional assembly parameter in the RBM subtask S:LOAD. 
This parameter does not increase RBM. 

Appendix G 159 



APPENDIX H. MEMORY REQUIREMENTS 

CORE SPACE REQUIREMENTS FOR RBM 

The minimum RBMsystem (which would consist of keyboard/ 
printer, paper tape, and RAD I/O routines, and a minimum 
number of RAD device-fi les and operational labels) requires 
about 4300 10 cells for the Real-Time Batch Monitor and all 
its tables. This minimum core space requ irement will in­
crease as handlers are added for additional peripherals, 
as additional optional software routines are chosen (see 
Table H-1) during SYSGEN, and as additional device­
files, operational labels, or Public Library DEFs are allo­
cated during SYSGEN. The following table indicates the 
approximate core space requirements for the additional rou­
tines. Unless otherwise indicated, these number are only 
approximate and have been rounded to the next higher 
multiple of 25. 

Table H-l. Core Requirements for Additional Software 

Approximate 
Handler or routine size (decimal) 

Multi ply/Divide Simulation 175 
Software 

Power Off/On 196 

M:IOEX 188 

Job Accounti ng 216 

Line Printer Handler 79 

Card Reader Hand ler 2 (exact size) 

BC D Opti on for Card 2 (exact size) 
Reader 

Magnetic Tape Handler 208 

Card Punch Handler 2 (exact size) 

BCD Option for Card 2 (exact size) 
Punch 

Each additional RAD Device 15 (exact size) 
File 

Each additional Operational 2 (exact size) 
label 

Each Public Library DEF 2 (exact size) 

Hence, the resident core space requirements for RBM vary 
from 4300 to 6200 cells, depending upon the user's con­
figuration. If background processing is desired, the user 

160 Appendix H 

must allocate at least 3800 cells for background to accom­
modate the RBM Job Control Processor which executes in the 
background space. 

CORE SPACE REQUIREMENTS FOR THE 
RBM PROCESSORS 

The minimum background space necessary to individually 
load with the Overlay Loader program and to execute all 
the RBM Processors is 7K cells (1 K = 10241O). The largest 
processor here is Basic FORTRAN IV, which requires 7K 
cells when it is loaded by the Overlay Loader. FORTRAN 
programs of reasonable size can be compi led in 7K of back­
ground. Extended Symbol can be loaded in a minimum of 
6. 25K of background, and a program of approximately 1200 
to 1800 instructions could be assembled in this minimum 
space. The other RBM processors can all be loaded and 
executed in less than 6K of background. 

RAD SPACE REQUIREMENTS 

Table H-2 gives the allocations for the system areas of the 
RAD, if a user chooses not to override the defaurt case. The 
following discussion assumes a 360-byte-per-sector RAD. 

Table H-2. RAD System Area Requirements 

Area Size Comments 

Checkpoint n sectors n=size of background 
(in sectors). 

System 30 tracks Sufficient to contain all 
Processor RBM processors plus RBM. 

System 9 tracks Suffi cient to contain two 
Library versions (extended and 

basi c) of Math/Run-Time 
Library. 

System 14 tracks RBM files. 
Data 

Note that this leaves approximately one spare track in the 
system data area. However, if a Public library is included, 
the file UBSYM must be added to the system data area. 
Hence, the system areas and the checkpoint area will 
normally consume about 45 tracks of the RAD. (The small­
est Xerox RAD, . 75 megabyte, has 128 tracks.) The only 
other area used by the system is the background temp area. 
The processor that normally requires the largest background 
temp area is Extended Symbol. Extended Symbol normally 
requires the background temp area to be spl it into three 



scratch files, called Xl, X2, and X3. t File Xl is ci 
compressed fi Ie and contains the user's source deck 
(about 12 source cards can be compressed into one RAD 
sector). File X2 contains the user's source deck in an en­
coded form (normally about 36 source cards can be stored 
in one RAD sector on X2). File X3 is only used if the pro­
gram being assembled contains local symbols. Normally, 
the RAD space required for X3 is insignificant .compared 
with Xl and X2. Hence, to assemble a 5000-card source 
program, approximately 35 tracks of background temp area 
would be required. Thus, if a user wants to have all the 
system processors and a complete system library stored on 
the RAD, and wants to a" ocate enough background temp 

area to assemble about a 5000-line source program, approxi­
mately 80 tracks of the RAD would be used. 

tThe Job Control Processor will automatically divide the 
total background temp area into three scratch files upon 
encountering an IXSYMBOL command. The total area is 
divided amoung the Xl, X2, and X3 files according to the 
following ratios: 

Xl :X2:X3 = 90: 30: 3 

The user can override these default allocations by inputting 
a ! DEFINE command prior to the I XSYMBOL command. 

Appendix H 161 



APPENDIX I. CALCULATING THE RBM SIZE 

To calculate the size of RBM (RBM LWA) before a SYSGEN, 
add the base value of F86 or 3980: 

8 x number of I/O channels 

2 x number of definitions in the Public Library 

4 x number of entries in nonresident foreground queue 

4 x number of Master Dictionary entries 

1 x number of entries in Alternate Track Pool 

10 x number of RAD/disk pack devices 

To this figure add the following: 

C4(16) or 196(10) cells if aYresponse to INC. POWER 

ON/OFF 

AD(16) or 173(10) cells if a Y response to INC. MUL/ 

DIV SIM. 

BB(16) or 188(10) cells if a Y response to INC. M:IOEX 

DO(16) or 216(10) cells if a Y response to INC. CLOC K 

ONE 

10(16) or 16(10) cells if a Y response to INC. DEBUG 

56(16) or 85(10) cells if a Y response to INC. MISC. 

2 or 2(10) cells if a Y response to INC. C. O. C. 

Add to this amount the number given below (see Table 1-1) 
if the corresponding devi ce type is included in the SYSGEN 
parameter DEVICE FILE INFO: 

To this sum, add two cells for each background or foreground 
operational label. 

Since SYSGEN attempts to store whatever optional routine 
of tables it can into the unused interrupt locations, the size 
of the unused interrupt region can generally be subtracted 
from this accumulated sum. The size of this area can be 
determined by subtracting the value input for the SYSGEN 
parameter MAX. INT. LOC from lSF(l6) (399(10». How­
ever, this figure will be less than the true size of RBM since 
not all of these unused interrupt locations can be used 

Table 1-1. Device Type Table Allocations 

Size 

First Input Additional Inputs 

Device Hex. Dec. Hex. Dec. 

KP 1F 31 (required) F 15 

LP2 1 E 30 E 14 

LPS 4F 79 B 11 

CR4 1B 27 B 11 

CP1 1F 31 F 15 

CP3 96 150 86 134 

Any magnetic tapet DO 208 B 11 

PT 1F 31 F 15 

PL 19 25 B 11 

RDtt - - 14 20 

XX 6 6 6 6 

t 
Add two cells to the first input if magnetic tape is BCD. 

ttThe default case for background is nine RD files. 

162 Appendix I 



• 
APPENDIX J. DEBUG EXPANSION OF INSTRUCTIONS 

EXPANSION OF INSERTED INSTRUCTIONS 

Class 1 instructions that are inserted via the insert (I) com­
mand are expanded into more than one instruction if desig­
nated in the op*address form. (Note that expansions of 
indirect instructions are not reentrant. ) 

Op is direct (O): op 
B 
DATA 

Op is indexed (2): op 
B 
DATA 

Op is indirect (4): STA 
LDA 
STA 
LDA 
op 
B 
DATA 
DATA 
DATA 

Op is indirect and indexed (6): 

STA 
LDA 
STA 
LDA 
op 
B 
DATA 
DATA 
DATA 

*$ + 2 
$+2 
address 

*$ + 2, 1 
$+2 
address 

$+6 
*$ + 7 
$+5 
$+3 
*$ + 3 
$+4 
0 
0 
address 

$+6 
*$ + 7 
$+5 
$+3 
*$ + 3, 1 
$+4 
o 
o 
address 

Class 2 instructions are expanded as follows: 

op 
B 
B 
DATA 

$ + 2 
$+3 
*$ + 1 
address 

EXPANSION OF MOVED INSTRUCTIONS 

An instruction that is moved from the point of insertion to 
the insert block will require expansion if its addressing is 
relative or if it is a register copy instruction in which the 
P register is the source. 

The relative instructions are expanded the same as the 
inserted instructions discussed in the first part of this 
appendix. In the case of Insert Before (IB) or snap­
shots, register copy instructions in which P is the source 
and the clear bit is set will be expanded in one of two 
ways: 

1. If the destination is the A register: 

LDA $ + 3 
op A,A 
B S + 2 
DATA a+ 1 

2. If the destination is not the A register: 

STA $+5 
LDA $+5 
op A, R 
LDA S + 2 
B S + 3 
DATA 0 
DATA a+1 

In the above expansions, a is the location (point) of the 
insertion and op has the appropriate settings for the incre­
mentation and inversion bits. 

Debug has no faci lity for expanding a copy instruction where 
either (l) the P register is the source, the A register is the 
destination, and the clear bit is reset, or (2) the P register 
is the destination and the clear bit is reset. In this case a 
Debug syntax error is generated. 

Appendix J 163 



APPENDIX K. DEBUG INSERTION STRUCTURE 

An insertion at location a will result in the following: 

a B * f3 

f3 DATA Y 

moved instruction expansion if IA command 

inserted i nstructi ons or snapshot ca" code 

y 

moved instruction expansion if IB or snapshot command 

B *$ + 1 

DATA a+ 1 

where {3 is one of the Debug cells in the zero table and Y is an area in the insertion block. 

164 Appendix K 



APPENDIX L. DEBUG SNAPSHOT CALLING SEQUENCE 

A snapshot inserted at location a will generate the following 
calling sequence (which is inserted in the insertion block 
similar to a Debug IB command): 

a1 
a2 

DATA 
DATA 

D:SNAP 
block 

instruction that was at location a 
entry WD X'FC' (foreground only) 

where 

STA *a2 
RCPYI P, A 
B ~1 

DATA a 
DATA key 
conditions if any 
DATA -1 
message if any 
DATA 
dumps if any 

. DATA 

-1 

-1 
expanded instruction from location a 
B *$ + 1 
DATA a+ 1 

block is the address of the first word of the inser-
tion block and is used to save the A register. 

key (bits 0-2) designates type of snapshot: setting 
bit 0 designates stepping snapshot; setting bit 1 
desi gnates line pri nter snapshot output; and setting 
bit 2 designates keyboard control requested. 

message 
any. 

is the string of EBCDIC characters, if 

condition is a string of relational expressions sep-
arated by logical operators. A relational expres­
sion occupies three words as follows: 

loc, reg, or constant 

M11M21 IC I ElL I G 

loc, reg, or constant 

dumps 

where 

M 1 (bits 0-1) designates the type of 
quantity in the first word: 

00 location 

01 register 

10 constant 

M2 (bits 2-3) designates the type of 
quantity in the third word. 

C (bit 12) designates comparison where 
o = arithmetic and 1 = logical. 

E (bit 12) 

L (bit 14) 

G (bit 15) 

designates equal comparison. 

designates less than comparison. 

desi gnates greater than 
comparison. 

A logical operator occupies one word: 

o logical or 

logical and 

are two-word or three-word items: 

register dump 
regi ster number 

or 

loc 1 
memory dump 

o J T 1 

loc 2 

where 

T = 1 designates keyboard/printer and 
line printer output. 

T = 0 designates I ine printer output. 

A zero register number designates all registers. 

Appendi x L 165 



INDEX 

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

A 
abort, 12 
abort codes, 151 
ABS control command (Monitor), 9 
Absolute Loader, 9,3,63 
absolute ob ject language, 9 
accounting (clock 1), 4 
accounting fi Ie, 14 
active foreground program, VIII 

ADD control command (RAD Editor), 86 
address definition, 144 
address literal chain resolution, 145 
AIO receiver, 70,56,31,32,65 
ALL option, 128 
ASSIGN control command (Monitor), 10 
ASSIGN control command (Uti I ity), 97 
ATTEND control command (Monitor), 12 
Automatic Dialing Equipment (ADE), 158 

B 
B debug command, 139 
background, viii 
background abort, 12 
background core allocation, 120 
background jobs, 2, viii, 7 
background restrictions, 7 
background scheduling, 2 
bad tracks, 90 
Basic FORTRAN IV, 6, 18 
Basic FORTRAN IV compi ler, 16, 17 
binary object module, 100 
BL oplb key-in, 24 
batch processing, viii 
blocked fi Ie, 45,87 
blocked RAD fi les, 57 
blocking buffer, 45 
BLOCK control command (Overlay Loader), 78 
BR, key-in, 24 
BT dn, track key-i n, 24 
buffer pool, 45 

c 
C: control command (Monitor), 12 
C:TCB key-in, 24 
CC control command (Monitor), 13 
CC key-in, 24 
CHANGE control command (Utility), 104 
channel time limits, 56 
Character-Oriented Communications, 157,6 
check-write operation, 39,29 
checkpoint, 43, viii, 4,70 

166 Index 

CLEAR control command (RAD Editor), 90 
clock, 1,4 
COC (see Character Oriented Communications) 
COMMON, 72,77 
completion codes, 54 
compressed EBCDIC fi Ie, 13 
compressed files, 8,39,8,40 
compressed records, 36 
CONCORDANCE program 6, 17 
connect line, 55 
context swi tchi ng, 42 
control command diagnostics, 154 
Contro I Comma nd Interpreter (see job Contro I Processor), 41 
Control Function Processor, 96,94 
Control Panel Task, 62 
Copy Routine, 97 
COPY control command (Uti I ity), 99 
core memory allocation, 118, 117 
core space requ i rements, 160 
counter interrupt locations, 147 
CP key-in, 24 
cross-reference I isti ng, 6, 112 

o 
D debug command, 136 
DTMMDD key-in, 24 
data chaining, 31,56 
data fi les, 4,3,84 
DB key-in, 24 
DE key-in, 24 
Debug, 135,6 
Debug commands, 136 
Debug error messages, 140 
Debug expansion, 163 
Debug insertion structure, 164 
Debug snapshot calling sequence, 165 
DEF/REF file, 84 
DEFINE control command (Monitor), 13 
DELET E control command (RAD Editor), 87 
DELETE control command (Utility), 103, 105 
device equivalence, 57 
device name, 122, vi ii 
device unit number, 10 
device order bytes, 59 
device positioning, 44 
device type name, 122,56 
device type table, 121 
device unit number, 11, viii, 112 
device-file number, 10, viii, 11, 12, 126 
DF key-in, 24 
disk pack, viii 
disconnect line, 55 
displacement chain resolution, 145 
Divide instruction, 62 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

DM key-in, 24 
DR key-in, 25 
DUMP control command (RAD Editor), 89 
DUMP control command (Utility), 100 
Dump Routine, 99 

E 
E debug command, 139 
EBCDIC file, 84 
elapsed time, 4 
end action, 56 
END control command (RAD Editor), 90 
END control command (Overlay Loader), 82 
END control command (Uti lity), 97 
end module, 143 
end-of-file mark, 16 
EOD control command (Monitor), 13 
EOM key-in, 24,35 
EOT,39,40 
Extended Symbol, 6, 17 
external interrupts, 63, viii, 71 

f 
F key-in, 25 
FBACK control command (Monitor), 13 
FBACK control command (Utility), 96 
FCOPY control command (RAD Editor), 88 
FG key-in, 25, 14 
file allocation, 87 
Fi Ie Control Table (FCT), 121 
fi Ie management, 59 
fi Ie name, 4, ix, 11 
fi Ie positioning, 13 
FIN control command (Monitor), 13 
FL oplb key-in, 25 
floating accumulator, 147 
floating flags, 147 
floating-point accumulator, 8 
foreground coding procedures, 71 
foreground initialization, 66 
foreground load, 63 
foreground mailbox, 60 
foreground operational labels, 11 
foreground priority levels, 68,63,64 
foreground programs, 2, ix 
foreground tasks, 2,7, ix 
foreground updates, 133 
format byte, 38 
FR key-in, 25 
FSKIP control command (Monitor), 13 
FSKIP control command (Utility), 98 

G 
GO file, 18, ix, 15,74, 112 
granule, 58, ix, 32,34,48,72 

H 
H key-in, 25 
hardware requirements, 5 
header word, 142 
HEX control command (Monitor), 14 
hexadecimal corrector cards, 159 
High-speed Line Printer Handler, 117 
HIO, 31 

I debug command, 137 
IDENT control command (Uti lity), 105 
idle account, 4 
INCLUDE control command (Overlay Loader), 81 
inhibited interrupt, ix 
Input/Output Task, 62 
INSERT control command (Utility), 102, 103 
integral lOP timeout, 147 
Interrupt Switch, 24 
I/O check, 31 
I/O completion codes, 34 
I/O Control Table, 121, ix 
I/O data tables, 31 
I/O initiation, 56 
I/O interrupt, 68 
I/O operations, 56,68 
I/O priority level, 68 
I/O recovery procedure, 20 
I/O system hardware, 29 
I/O termination, 41 
10CD, 3,29,31 
10CS pointers and constants, 147 
lOP watchdog timeout, 61 

J 
JCP (see Job Control Processor) 
job, 7 
job accounting, 4 
JOB control command (Monitor), 14 
Job Control Processor, 9, 16, 18 
JOBC control command (Monitor), 14 
job step, 8,9 

K 
K Debug command, 139 
K:TCB key-in, 61 
KEY ERROR message, 23 
KP key-in, 25 

L 
LADD control command (RAD Editor), 88 
Lar, dn, wp, key-in, 25 
LB control command (Overlay Loader), 80 

Index 167 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

LCOPY control command (RAD Editor), 89 
LD control command (Overlay Loader), 80 
LDELETE control command (RAD Editor), 89 
LIB control command (Overlay Loader), 78 
Library, 73 
lib ra ry c rea t ion, 133 
library fi Ie sizes, 85,86 
library fi les, 84,4 
library load module, ix 
I ibrary update, 133 
LIMIT control command (Monitor), 14 
I ine mode, 54 
line status, 54 
LIST control command (Utility), 102, 103 
I ist mode, 102, 103 
load item, 142 
load map, 75, ix 
load module, 10, ix 
load origin, 143 
Loader error messages, 82 
loading foreground, 63 
logical device, ix 
LREPLACE control command (RAD Editor), 88 
LSQUEEZE control command (RAD Editor), 89 

M 
M Debug command, 139 
M:ABORT, 41 
M:ASSIGN, 48,27 
M:CKREST, 43 
M:CLOSE, 45, 18,27,38 
M:COC, 53, 157 
M:CTRL, 39, 18,27,33 
M:DA TIME, 40,27 
M:DEFINE, 47, 18,27 
M:DKEYS, 46 
M:DOW, 52,27 
M:EXIT, 42,80 
M:HEXIN, 42 
M:INHEX, 43 
M:IOEX, 27, 117 
M:LOAD, 44,27 
M:OPEN, 45,27 
M:OPFILE, 51 
M:POP, 50 
M:READ, 31,33 
M:RES, 50 
M:RSYP, 51,27 
M:SAYE, 42,61,79 
M:SEGLD, 46, 18 
M:TERM, 41, 18 
M:WAIT, 46, 27 
M:WRITE, 36,33 
Machine Fault Task, 61 
magnetic tape, 35,56 
Magnetic Tape Handler, 117 
mai Ibox, 2,60 
map, 79,89 

168 Index 

MAP control command (RAD Editor), 89 
Mar, dn key-in, 25 
Master Dictionary, 121, 128 
MD control command (Overlay Loader), 81 
memory requirements, 160 
MESSAGE control command (Monitor), 14 
MESSAGE control command (Utility), 96 
ML control command (Overlay Loader), 79 
MODIFY control command (Utility), 102, 103 
modify mode, 102, 103 
module directory fi Ie, 84 
module fi Ie, 84 
Monitor constants, 149 
Monitor control commands, 9 
Monitor messages, 60 
Monitor service routines (see also M: entries), 27,1,8,28,74 
Monitor tasks, 60 
MP control command (Overlay Loader), 79 
MS control command (Overlay Loader), 79 
multiple precision mode, 62 
Multiply instruction, 62 
Multiply/Divide Exception Tasks, 62 
Multiply/Divide simulation, 117 

N 
name definition, 144 
New Line Code, 24 
nonresident foreground, 8, 1 
nonresident foreground programs, 60, ix 

o 
object module, 122, ix, 115 
Object Module Editor, 100 
object record format, 141 
OLOAD control command, 77 
OMEDIT control command (Utility), 101,95 
operational label, 10, 155 
operational label table, ix 
operator commun i cati on, 20 
operator communication routine, 95 
OPLBS control command (Uti lity), 98 
OY fi Ie, 18, x, 9, 16, 19,74, 112 
OY:LOAD table, 9 
Overlay Loader, 72,2,4,6,27,65, 132 
Overlay Loader control commands, 78 
overlay program, x 
override task, 61 

p 
P debug command, 139 
packed-bi nary mode, 36 
PAUSE control command (Monitor), 14 
PAUSE control command (Uti lity), 96 
permanent RAD fi les, 84,3,6 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numerical sequence. 

PMD control command (Monitor), 14 
physical device, x 
postmortem dump (see PMD), x, 26 
Power Off Routi ne, 147 
Power Off Task, 61 
Power On Routine, 147 
Power On Task, 60 
Power On/Off, 117 
PR EST ORE control command (Uti I i ty), 97 
primary reference, x 
priority level, 68,2,56 
processor control commands, 16 
processor fi les, 3 
program, 7 
program deck examp les, 112 
protection switches, 5 
Protection Violation Task, 62 
PUBLIB control command (Overlay Loader), 82 
Public Library, 82,4,72, 113, 115 
PURGE control command (Monitor), 15 

Q 
Q debug command, 139 
Q name key-in, 25 
Q:ROC subroutine, 27 

R 
R Debug command, 138 
RAD allocation, 118,6,59,84, 124 
RAD/diskpackareas, 3,x,6, 12,59,84, 118 
RAD Editor, 84,3,6 
RAD Editor control commands, 86 
RAD Editor error messages, 90 
RAD fi les, 84,2 
RAD space requirements, 160 
RADEDIT control command, 86 
random fi les, 58, 13,36,39,57 
RBACK control command (Monitor), 13 
RBACK (Uti lity), 97 
RBM Control Routine, 7 
RBM Control Task, 8, 12,24,60,62 
RBM size, 162 
RBM Symbol Table, 131 
RBM Zero Table, 147 
RBMOV fi Ie, 10 
RCOC Initialization Routine, 55, 157 
record header, 142 
Read Automatic, 35,36 
Read Backward, 36 
Read Binary, 35,36 
Real-Time programming, 60 
rebooting system, 133 
RECEDIT control command (Utility), 103 
Record Editor Routine, 102 
record padding, 142 
reentrant routines, 4, x 

REL control command (Monitor), 15 
relative location pointer, 144 
relocatable binary program, 15 
relocated load-COMMON base, 143 
relocated load-module base, 142 
repeat load, 142 
resident foreground, 7,60 
resident foreground programs, 60, x 
restart, 43 
RESTORE control command (RAD Editor), 90 
REWIND control command (Monitor), 15 
REWIND (Utility), 97 
rewind off-line, 40 
rewind on-line, 40 
ROOT control command (Overlay Loader), 80 
root segment, 44, 72 
RSKIP control command (Monitor), 13 
RSKIP control command (Uti lity), 97 

s 
S Debug command, 137 
S key-in, 25, 14 
S:LOAD, 9 
SAVE control command (RAD Editor), 90 
secondary reference, 145 
SEG control command (Overlay Loader), 81 
segmented deck examples, 114 
semiresident foreground program, 60, x 
SEQEDIT control command (Utility), 105 
SEQUENCE control command (Utility), 106 
Sequence Editor, 104 
sequential fi les, 57, 15,36,39,40 
SIO, 31 
skip mode, 12 
snapshot dump, 135 
source editing, 102 
Source Input Interpreter, 94 
space file backward, 40 
space file forward, 40 
space record backward, 40 
space record forward, 40 
SQUEEZE control command (RAD Editor), 90,84 
squeezing, 84,89 
standard constants, 148 
Standard Object Language, 141 
standard system constants and tables, 148, 1 
start module, 143 
SUPPRESS control command (Utility), 106 
SY key-in, 26, 14 
SYSGEN, 117,5 
SYSGEN error messages, 129 
SYSGEN options, 159 
SYSLOAD, 128, 117 
SYSLOAD alarms, 133 
system communication, 20 
System Data Area Dictionary, 131 
System Library fi les, 4,48 
system load, 128, 117 

Index 169 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed 
in numberical sequence. 

System Load Processor, 128 
System Processor Dictionary, 131 
system processors, 16,113 
system RAD, 118, 1 

T 
T Debug command, 138 
T HRMN key-in, 26 
task, 7 
Task Control Block, 66, xi, 7,79, 147 
TCB (see Task Control Block) 
TCB control command (Overlay Loader), 79 
TEMP control command (Monitor), 15 
Temp Stack, 50, xi, 23, 27, 68, 69 
temporary files, 13, 18 
TIO, 31,30 
TRACKS control command (RAD Editor), 90 

u 
UL key-in, 26 
unblocked file, 13 
UNLOAD control command (Monitor), 16 
UNLOAD control command (Uti lity), 97 
unrelocated load, 142 
unsol icited key-ins, 24 
UPD option, 131 
user data areas, 3, 12 
User Library fi les, 4 
Utility control commands, 96 
Uti I ity error messages, 106 
Uti I ity program, 94,6 

170 Index 

Uti I ity Program Control Routine, 95 
Utility Program Executive, 94 

y 

VERIFY control command (Utility), 99 

w 
W key-in, 26 
wait condition, 12 
wait instruction, 46 
WEOF control command (Monitor), 16 
WEOF control command (Utility), 97 
Write Binary, 38,39 
Write Direct, 56,63 
Write EBCDIC, 38,39 
Write End-of-Fi Ie, 37 
Write-End-of-Fi Ie (see WEOF) 

x 
X debug command, 138 
X key-in, 26 
XED control command (Monitor), 16 
XEQ control command (Monitor), 16 

z 
zero table, 147 
Z key-in, 26 




	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	xBack

